Chứng minh rằng :
n(n^4-16)chia hết cho 15 (n thuộc Z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Câu hỏi của Trịnh Hoàng Đông Giang - Toán lớp 8 - Học toán với OnlineMath
2, \(2n\left(16-n^4\right)=2n\left(1-n^4+15\right)=2n\left(1-n^2\right)\left(1+n^2\right)+30n=2n\left(1-n\right)\left(1+n\right)\left(n^2-4+5\right)+30n\)
\(=-2n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+10n\left(n-1\right)\left(n+1\right)=-2n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)\)
Vì n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 3;5
Mà (3,5) = 1
=> n(n-1)(n+1)(n-2)(n+2) chia hết cho 15
=> -2n(n-1)(n+1)(n-2)(n+2) chia hết cho 2.15 = 30 (1)
Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 3
=>10n(n-1)(n+1) chia hết cho 10.3 = 30 (2)
Từ (1) và (2) => \(-2n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)⋮30\) hay \(2n\left(16-n^4\right)⋮30\left(đpcm\right)\)
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
wed này bạn ơi : http://giasutoan.giasuthukhoa.edu.vn/chung-minh-rang-5n-1-chia-het-cho-4/
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Đặt A = n(n^4-16).
Ta có: n(n^4-16) = n(n^2-4)(n^2+4) = n(n-2)(n+2)(n^2+4)
Để chứng minh A chia hết cho 15, ta sẽ chứng minh A chia hết cho cả 3 và 5.
a. Chứng minh A chia hết cho 3:
- Nếu n = 3k, dĩ nhiên A chia hết cho 3.
- Nếu n = 3k+1, => n+2 = 3k+3 chia hết cho 3 => A chia hết cho 3.
- Nếu n = 3k+2, => n-2 = 3k chia hết cho 3 => A chia hết cho 3.
b. Chứng minh A chia hết cho 5:
- Nếu n=5k dĩ nhiên A chia hết cho 5.
- Nếu n = 5k+1, => n^2+4 = ((5k+1)^2+4) = 25k^2+10k+5 chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+2, => n-2 = 5k chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+3, => n+2 = 5k+5 chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+4, => n^2+4 = ((5k+4)^2+4) = 25k^2+40k+20 chia hết cho 5 => A chia hết cho 5.
Trong mọi trường hợp,A chia hết cho cả 3 và 5, mà 2 số này nguyên tố cùng nhau => A chia hết cho 15