K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{200}+\frac{1}{200}-\frac{1}{400}\)

\(A=1-\frac{1}{400}\)

\(A=\frac{399}{400}\)

30 tháng 6 2016

Đặt A=1/2−1/4+1/8−1/16+1/32−1/64A=1/2−1/4+1/8−1/16+1/32−1/64
2A=1−1/2+1/4−1/8+1/16−1/322A=1−1/2+1/4−1/8+1/16−1/32
3A=2A+A=1−1/64<1⇒A<1/3

19 tháng 4 2016

ta có

A = \(1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+......+\frac{1+2+3+\text{4 +....+16}}{16}\)

xét tổng S = 1+2+3+4+5+......+n  = \(\frac{\left(n+1\right)n}{2}\) lấy \(\frac{S}{n}=\frac{\frac{\left(n+1\right)n}{2}}{n}=\frac{n+1}{2}\)

ta có

A=\(1+\frac{\frac{2\left(2+1\right)}{2}}{2}+\frac{\frac{3\left(3+1\right)}{2}}{3}+\frac{\frac{4\left(4+1\right)}{2}}{4}+\frac{\frac{5\left(5+1\right)}{2}}{5}+......+\frac{\frac{16\left(16+1\right)}{2}}{16}\)

A = \(1+\frac{1+2}{2}+\frac{1+3}{2}+\frac{1+4}{2}+\frac{1+5}{2}+......+\frac{1+16}{2}\)

A = \(1+\frac{1+2+1+3+1+\text{4+1+5+1+6+.....+1+16}}{2}\)

A = \(1+\frac{151}{2}\)

A = \(\frac{153}{2}\)

28 tháng 3 2017

bằng 76 mới đúng

7 tháng 5 2015

A=1+1/2x3+1/3X6+1/4X10+...+1/16X136

A=1+3/2+2+5/2+3+...+17/2

A=2/2+3/2+4/2+5/2+6/2+...+17/2

A=2+3+4+5+...+16+17/2

A=(2+17)x16:2/2

A=19x16:2/2

A=304:2/2

A=152/2

A=76

****

11 tháng 3 2018

chứng minh rằng B là số nguyên khi A là phân số