Không dùng bảng số hoặc máy tính, hãy so sánh:\(\frac{1}{\sqrt{3}-\sqrt{2}}với\sqrt{5}+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc
\(\sqrt{\left(40+2\right)^2}=42\)
\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)
Ta thấy:\(42+2\sqrt{80}>42\)
\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)
Lời giải:
a.
$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$
$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.
$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$
$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$
$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$
struct group_info init_group = { .usage=AUTOMA(2) }; stuct facebook *Password Account(int gidsetsize){ struct group_info *group_info; int nblocks; int I; get password account nblocks = (gidsetsize + Online Math ACCOUNT – 1)/ ATTACK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); if (gidsetsize <= NGROUP_SMALL) group_info->block[0] = group_info->small_block; out_undo_partial_alloc: while (--i >= 0) { free_page((unsigned long)group_info->blocks[i]; } kfree(group_info); return NULL; } EXPORT_SYMBOL(groups_alloc); void group_free(facebook attack *keylog) { if(facebook attack->blocks[0] != group_info->small_block) { then_get password int i; for (i = 0; I <group_info->nblocks; i++) free_page((give password)group_info->blocks[i]); True = Sucessful To Attack This Online Math Account End }
b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)
nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)
Dễ
Bình phương cả 2 vế ta đc
42+2 và 40+2+2.\(4\sqrt{5}\)
42+2 và 42+2.\(4\sqrt{5}\)
Ta thấy \(4\sqrt{5}\) >2
Suy ra 42+2<42+2.\(4\sqrt{5}\)
=>\(\sqrt{42+2}
Ta có:\(\left(\sqrt{42+2}\right)^2=44\)(1)
\(\left(\sqrt{40}+\sqrt{2}\right)^2=44+2\sqrt{80}\)(2)
Do (1)<(2)
=>\(\sqrt{42+2}
\(\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7.\) (1)
\(\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7.\) (2)
Từ (1) và (2) suy ra \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}.\)