K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2021

Áp dụng hệ thức lượng trong tam giác vuông ABH với đường cao BM:

\(AH^2=AM.AB\) (1)

Áp dụng hệ thức lượng trong tam giác vuông ACH với đường cao CN:

\(AH^2=AN.AC\) (2)

(1);(2)\(\Rightarrow AM.AB=AN.AC\)

NV
19 tháng 9 2021

undefined

Bài 2: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)

\(\widehat{ANH}=90^0\)

\(\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=MN

Ta có: \(AM\cdot AB+AN\cdot AC\)

\(=AH^2+AH^2\)

\(=2AH^2=2\cdot MN^2\)

15 tháng 7 2023

câu c,d bài 2

20 tháng 5 2022

loading...  loading...  đánh giá tốt giúp mk vs ạ

16 tháng 10 2023

a: BC=BH+CH

=4+9=13

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>AH=6

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)

b: ΔHAB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)

16 tháng 10 2023

Có hình vẽ ko ạ

18 tháng 3 2022

Quá dễ

18 tháng 3 2022

195cm2 tik cho mình nha

25 tháng 4 2022

a) XétΔABC vg tại A

⇒ BC²=AB²+AC²

⇒ BC=17cm

Xét ΔABH và ΔCBA có:
góc AHB= góc CBA

góc B: chung

⇒ ΔABH ∞ ΔCBA (g.g)
⇒ AB/BC=BH/BA

⇒ BH=AB²/BC

⇒ BH=64/17

Xét ΔABH vg tại H 

⇒AB²=BH²+AH²

⇒ AH=120/17

b) xét tg AMHN có: góc AMH= góc ANH= góc MAN=90

⇒ tg AMHN là hcn (dhnb)

⇒ AH=MN (t/c hcn)

⇒ MN=120/17

, Ta thấy tam giác AMH đồng dạng tam giác AHB (g.g) suy ra AM/AH = AH/ AB => AM.AB =AH^2

tam giác ANH đồng dạng tam giác AHC (g.g)
=> AN/AH = AH/AC
=> AN.AC = AH^2

suy ra AM.AB = AN.AC.

17 tháng 4 2017

làm sao để xem câu trả lời

a: Xét ΔABC vuông tai A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{8^2+15^2}=17\left(cm\right)\)

AH=8*15/17=120/17(cm)

c: AM*AB=AH^2

AN*AC=AH^2

=>AM*AB=AN*AC

23 tháng 11 2023

a: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN và ΔACB có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
\(\widehat{MAN}\) chung

Do đó: ΔAMN đồng dạng với ΔACB