Cho tam giác ABC nhọn, đường cao BD,CE.CMR:
a, SADE=SABC . Cos2A
b, SBCDE=SABC . sin2A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
Xét ΔAED và ΔACB có
góc AED=góc ACB
góc A chung
=>ΔAED đồng dạng với ΔACB
=>S AED/S ACB=(AE/AC)^2=(cos60)^2=1/4
=>S AED=1/4*S ACB
TA CÓ \(\Delta ADB\)đồng dạng \(\Delta AEC\)(g-g)
\(\Rightarrow\)\(\frac{AD}{AB}=\frac{AE}{AC}\)
Xét \(\Delta AED\)và \(\Delta ACB\) có :
góc A chung
\(\frac{AD}{AB}=\frac{AE}{AC}\)(CMT)
\(\Rightarrow\Delta AED\infty\Delta ACB\)(c-g-c)
\(\frac{S\Delta AED}{S\Delta ACB}=\left(\frac{AD}{AB}\right)^2\)=\(\frac{3}{4}\)
\(\Rightarrow\frac{AD}{AB}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\cos A=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\)góc A=60 ĐỘ
Xét tam giác AEF và tam giác ABC có:
A chung
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(=cosA\right)\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2A=1-sin^2A\)
\(1-\sin^2A=\cos^2A=\dfrac{AF^2}{AC^2}\left(1\right)\)
Ta có \(\widehat{AEB}=\widehat{AFC}=90^0\Rightarrow\Delta AEB\sim\Delta AFC\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\\ \Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AF}{AC}\right)^2=\dfrac{AF^2}{AC^2}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)
c, Xét tam giác ADB vuông tại D có :
cosA = \(\frac{AD}{AB}=\frac{1}{2}\)
Lại có tam giác AED ~ tam giác ACB
\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2\Rightarrow\frac{S_{ADE}}{12}=\frac{1}{4}\Rightarrow S_{ADE}=3\)cm2
Vì \(\widehat{BAC}=60^o\) nên \(\dfrac{AD}{AB}=\dfrac12\) (sẽ giải thích ở phần sau)
Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:
\(\widehat{A}\) là góc chung
Nên \(\triangle ACE \backsim \triangle ABD (g.g) \text{theo tỉ số đồng dạng } k=\dfrac{AD}{AB}=\dfrac12\)
\(=> \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = k^2=(\dfrac12)^2=\dfrac14\)
Vậy \( \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = \dfrac14\)
Bình luận: Vì sao \(\dfrac{AD}{AB}=\dfrac12\)?
Chứng minh điều này như sau:
Kẻ đường trung tuyến DM của tam giác ABD.
Từ đây suy ra \(MD=\dfrac12 AB\) (định lý đường trung tuyến trong tam giác vuông)
Mà \(AM=\dfrac12 AB\) (do DM là trung tuyến)
Nên \(AM=MD\)
Do đó tam giác AMD cân tại M
Mà \(\widehat{MAD}=60^o\) (do \(\widehat{BAC}=60^o\))
Nên tam giác AMD đều
\(=>AM=AD\)
\(=>\dfrac{1}{2}AB=AD\) (DM trung tuyến)
\(=>\dfrac{AD}{AB}=\dfrac{1}{2}=>đpcm\)
Vì \(\widehat{BAC}=60^o\) nên \(\dfrac{AD}{AB}=\dfrac12\) (sẽ giải thích ở phần sau)
Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:
\(\widehat{A}\) là góc chung
Nên \(\triangle ACE \backsim \triangle ABD (g.g)\)
Từ đó tự suy ra \(\triangle ADE \backsim \triangle ABC (c.g.c) \text{ theo tỉ số đồng dạng }k=\dfrac{AD}{AB}=\dfrac12\)
\(=> \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = k^2=(\dfrac12)^2=\dfrac14\)
Vậy \( \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = \dfrac14\)
Bình luận: Vì sao \(\dfrac{AD}{AB}=\dfrac12\)?
Chứng minh điều này như sau:
Kẻ đường trung tuyến DM của tam giác ABD.
Từ đây suy ra \(MD=\dfrac12 AB\) (định lý đường trung tuyến trong tam giác vuông)
Mà \(AM=\dfrac12 AB\) (do DM là trung tuyến)
Nên \(AM=MD\)
Do đó tam giác AMD cân tại M
Mà \(\widehat{MAD}=60^o\) (do \(\widehat{BAC}=60^o\))
Nên tam giác AMD đều
\(=>AM=AD\)
\(=>\dfrac{1}{2}AB=AD\) (DM trung tuyến)
\(=>\dfrac{AD}{AB}=\dfrac{1}{2}=>đpcm\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE;AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
d: ΔADE đồng dạngvới ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ADE}=30\left(cm^2\right)\)
dễ thấy Sabc =\(\frac{1}{2}\) AB.AC.sinA; Sade= \(\frac{1}{2}\)AD.AE.sinA
=> Sabc/Sade=ad.ae/ab.ac
de//bc thì \(\frac{AD}{AB}=\frac{DE}{BC}=>\frac{BD}{AB}=\frac{BC-DE}{BC}=>BD=\frac{AB\left(BC-DE\right)}{BC}\)
SBDE = \(\frac{1}{2}BD.DEsin\widehat{BDE}=\frac{1}{2}\frac{AB\left(BC-DE\right)}{BC}.DE.cos\widehat{ABC}=\)\(\frac{AB.cos\widehat{ABC}}{2BC}\left(BC.DE-DE^2\right)\)
BC.DE - DE2 = \(\frac{BC^2}{4}-\)(\(\frac{BC}{2}-DE\))2 \(\le\frac{BC^2}{4}\)
vậy SBDE đạt GTLN khi DE= \(\frac{BC}{2}\)hay \(\frac{DE}{BC}=\frac{1}{2}=\frac{AD}{AB}\) hay D là trung điểm AB
a: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
Xét ΔAED và ΔACB có
góc AED=góc ACB
góc EAD chung
DO đó: ΔAED đồng dạng với ΔACB
=>\(\dfrac{S_{AED}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2=cos^2A\)
hay \(S_{ADE}=S_{ACB}\cdot cos^2A\)
b: \(S_{BCDE}=S_{ABC}-S_{ABC}\cdot cos^2A=S_{ABC}\cdot sin^2A\)