Chứng minh rằng
aaa là một số chia hết cho 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ giải hộ bạn câu 1 nhé. (Câu 2 tớ cũng đăng lên olm rồi <_>)
1. Giải
Gọi bốn số tự nhiên tùy ý là : A1; A2; A3; A4.
Khi chia : A1; A2; A3; A4 cho 3, ta được:
A1= 3 x k1 + r1 với: 0 ≥ r1 < 3
A2=3 x k2 + r2 với: 0 ≥ r2 < 3
A3=3 x k3 + r3 với: 0 ≥ r3 <3
A4=3 x k4 + r4 với: 0 ≥ r4 <3
Vì khi chia cho 3 các số dư r1; r2; r3; r4 chỉ nhận 1 trong 3 giá trị: 0; 1; 2. Nên chắc chắn có ít nhất 2 số bằng nhau.
Ta lấy: r1 = r23k2
=>Ta có: A1 - A2 = (3k1 + r1) - ( 3k2 + r2) = (3k1 -3k2) chia hết cho 3.
=>Trong bốn số tự nhiên tùy ý, có ít nhất 2 số có hiệu chia hết cho 3.
a, Ta có: abcdeg = 1000. abc + deg
= 999. abc + abc + deg
= 37. 27 . abc + abc + deg
Có 37. 27. abc chia hết cho 37
và abc + deg chia hết cho 37.
Vậy abcdeg chia hết cho 37 với abc + deg chia hết cho 37.
b, Ta có: abcdeg = 1000. abc + deg
= 1001 . abc - abc + deg
= 7. 143 . abc - (abc - deg)
Có 7, 143 , abc chia hết cho 7
và abc - deg chia hết cho 7
Vậy abcdeg luôn chia hết cho 7 với abc - deg chia hết cho 7.
c, Trong 8 số tự nhiên liên tiếp thì luôn có các dạng số dư của một số khi chia cho 7 là \(\left\{0;1;2;3;4;5;6\right\}\)nhưng có tới tám số và 7 số dư thì chắc chắn trong tám số đó chắc chắn có 2 số đồng dư với nhau gọi là abc và deg. Mà abc và deg đồng dư với nhau thì hiệu abc - deg chia hết cho 7. Theo câu b thì abcdeg chia hết cho 7 với abc - deg chia hết cho 7. Suy ra abcdeg chia hết cho 7 với abc - deg chia hết cho 7.
Vậy trong 8 số tự nhiên có 3 chữ số, tồn tại hai số mà khi viết liêm tiếp nhau thì tạo thành một số có sáu chữ số chia hết cho 7.
Chúc bạn học tốt :)
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Ta lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Ta có: \(\overline{xyz}⋮37\)
\(\Leftrightarrow100x+10y+z⋮37\)
\(\Leftrightarrow111x-11x+10y+z⋮37\)
\(\Leftrightarrow11x-10y-z⋮37\)
Ta có: \(\overline{xyz}-\overline{yzx}=100x+10y+z-100y-10z-x=99x-90y-9z\)
\(\Leftrightarrow\overline{xyz}-\overline{yzx}=9\left(11x-10y-z\right)⋮37\)
\(\Leftrightarrow\overline{yzx}⋮37\)(đpcm)
Tham khảo
Đáp án:
abc = 100a + 10b + c
=> 100a + 10b + c chia hết cho 37
=> 10 x ( 100a + 10b + c) chia hết cho 37
<=> 1000a + 100b + 10 c chia hết cho 37
Lại có 999 chia hết cho 37 ( 999 = 3.3.3.37)
=> 999a chia hết cho 37
=> 1000a + 100b + 10 c - 999a chia hết cho 37
<=> a + 100b + 10 c chia hết cho 37
=> 10 x ( a + 100b + 10c) chia hết cho 37
<=> 1000b + 100c + 10a chia hết cho 37
999b chia hết cho 37
=> 1000b + 100c + 10a - 999b chia hết cho 37
<=> 100c + 10a + b chia hết cho 37
<=> cab chia hết cho 37
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Ta lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Ta có n=Abcd=1000A+bcd=999A+A+bcd=3.37.9A+(A+bcd). Vì A+bcd chia hết 37, 3.37.9A chia hết cho 37=>1000A+bcd chia hết cho 37 hay Abcd chia hết cho 37. Vậy n chia hết cho 37
=a.100+a.10+a.1
=a,(100+10+1)
=a.111
=a.37.3
Vậy aaa chia hết cho 37
\(aaa=a\cdot111\)\(=a\cdot3\cdot37⋮37\left(đpcm\right)\)