Bài 1 :
a 1+2+4+8+...+4098
b 1.2 + 2.3 + 3.4 +4.5 +... + 98+99 +99.10
c 2+5+7+12+...+81+131
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
S = 1.2 + 2.3 + 3.4 +...+99.100
3S = 1.2.3 + 2.3.(4 - 1) + 3.4(5 - 2) +...+ 99.100(101 - 98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 99.100.101 - 98.99.100
3S = 99.100.101
3S = 999900
S = 333300
P = 1 + 3 + 5 + 7 +...+ 2015
P = (2015 + 1)1008 : 2
P = 1016064
T = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 +...+ 97 + 98 - 99 - 100
T = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +...+ (97 + 98 - 99 - 100)
T = (-4) + (-4) +...+ (-4)
T = (-4)25
T = -100
K MIK NHA BẠN ^^
Tính B= 1 + 2 + 3 + ... + 98 + 99
Tính C = 1 + 3 + 5 + ... + 997 + 999
Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
4A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] /3
Bài 1: C = (999+1). [(999-1):2+1]: 2= 250000
Bài 2: B = (99+1). [(99-1):2+1]: 2= 2500
Bài 3: D = (998+10). [(998-10):2+1]: 2= 249480
Bài 4: 3S= 1.2.3 + 2.3.3 + 3.4.3+...+n.(n+1).3
= 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]
= 1.2.3+2.3.4+2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-n.(n+1)-(n-1)
=n.(n+1).(n+2)
=> A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
A= 1-2+3-4+4-5+...+99-100
A = ( 1 - 2 ) + ( 2 - 3 ) + ....+ ( 99 - 100 )
A = ( - 1 ) + ( - 1 ) +....+ ( - 1 )
A = ( - 1 ) . 50
A = - 50
B = 1.2 + 2.3 + 3.4 + 4.5 +...+ 99.100
Nhân cả 2 vế với 3, ta được:
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
=) B = (99.100.101) :3
B = 333300
Vậy B= 333300
A= 1-2+3-4+4-5+...+99-100
A = (1-2) + (3-4) + (4-5) + ... + (99-100)
A = (-1) + (-1) + (-1) + ...+ (-1)
A = (-1).50
A = 1
Ta có: A = 1.2 + 2.3 + 3.4 + 4.5 +.....+ 98.99
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... +98.99.(100 - 97)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 98.99.100
=> 3A = 98.99.100
=> A = 98.99.100 / 3
=> A = 323400