Cho tam giác ABC vuông tại A, AC > AB, M là trung điểm AB, P là điểm nằm trong tam giác ABC sao cho MP vuông góc AB. Trên tia đối của tia MP lấy Q sao cho MP = MQ. Chứng minh APBQ là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha
a) Vì M là trung điểm AB, PM=MQ, P,M,Q thẳng hàng=> M là trung điểm PQ
=>PQ giao AB tại trung điểm mỗi đường=> APBQ là hbh mà AB vuông góc với PQ=> APBQ là hình thoi
b) vì APBQ là hình thoi=> PB//AQ mà PB//CE=> CE//AQ (1)
ta có PQ vuông góc với AB
AC vuông góc với AB
=> AC//PQ=> EQ//AC ( PQ cắt đường thẳng // với PB tại E=> E thuộc PQ)(2)
từ (1);(2)=> ACEQ là hbh
c) 1) trong tam giác ABC có
MN //AC( N thuộc MP)
AM=MB
=> MN là đtb của tam giác => MN=AC/2=> AC=2MN
2) Vì AC=2MN=> AC=6cm
MN là đtb=> CN=BN
tam giác ABC vuông tại A
=> AN=BN=CN=BC/2( tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)
=> BC=2AN=10cm
vì tam giác ABC vuông tại A=> AB^2+AC^2=BC^2
=> AB^2=100-36
=> AB=8 (AB>0)
=> chu vi tam giác ABC là 6+8+10=24(cm)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
Xét ΔPAM vuông tại P và ΔQAM vuông tại Q có
AM chung
\(\widehat{PAM}=\widehat{QAM}\)
Do đó: ΔPAM=ΔQAM
=>PA=QA và MP=MQ
b: AP=AQ
=>A nằm trên đường trung trực của PQ(1)
MP=MQ
=>M nằm trên đường trung trực của PQ(2)
Từ (1) và (2) suy ra AM là đường trung trực của PQ
=>AM\(\perp\)PQ
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác và cũng là đường cao
b: Ta có: AB=CD
mà AB=AC
nên CD=AC
=>ΔACD cân tại C
mà CM là đường cao
nên M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
bạn tự vẽ hình nha!Nên sửa DQEF thành DQEP.
a,tứ giác DQEP có:ME=MD,MQ=MP nên DQEP là hình bình hành.
Lại có:DE vuông góc với QP nên hình bình hành DQEP là hình thoi.
b,DQEP là hình thoi nên EP song song với DQ mà FK song song với PE nên DQ song song với FK(1)
Lại có:DF và QK cùng vuông góc với DM nên DF song song với QK(2).
Từ (1) và (2) suy ra DFKQ là hình bình hành