K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

a/ Vì \(x\ge3>-\frac{2}{3}\) nên giá trị biểu thức là : 

\(x+\frac{2}{3}+x-3=2x-\frac{7}{3}\)

b/ Vì \(x>2>\frac{4}{3}>-\frac{2}{5}\) nên giá trị biểu thức là : 

\(-\left(x+\frac{2}{5}\right)+\left(x-\frac{4}{3}\right)=-\frac{4}{3}-\frac{2}{5}=-\frac{26}{15}\)

Ta thấy : \(\left(2x-1\right)^{2008}\ge0\)

\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)

\(\left|x+y+z\right|\ge0\)

Để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y=z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-x-y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{-1}{2}-\frac{2}{5}\end{cases}}\)

17 tháng 1 2016

Có ai trả lời không zvậy ?!? -_-

31 tháng 7 2019

1) \(\left(x-2\right)\left(\frac{x+1}{3}-x+1\right)=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+x-\frac{2\left(x+1\right)}{3}+2x-2=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+3x-\frac{2\left(x+1\right)}{3}-2=0\)

\(\Leftrightarrow x\left(x+1\right)-3x^2+9x-2\left(x+1\right)-6=0\)

\(\Leftrightarrow x^2+x-3x^2+9x-2x-2-6=0\)

\(\Leftrightarrow-2x^2+8x-8=0\)

\(\Leftrightarrow-2\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow-2.\left(x^2-2.x.2+2^2\right)=0\)

\(\Leftrightarrow-2\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy nghiệm của phương trình là: {2}

2) \(\left(3x+4x\right)\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)

\(\Leftrightarrow7x\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)

\(\Leftrightarrow7x\left(-\frac{11x}{10}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}7x=0\\-\frac{11x}{10}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{11}{10}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{10}{11}\end{cases}}\)

Vậy: nghiệm của phương trình là: \(\left\{0;\frac{10}{11}\right\}\)

3) \(\left|x-1\right|=x^2-x\)

\(\Leftrightarrow x-1=x^2-x\)

\(\Leftrightarrow1=x^2-x-x\)

\(\Leftrightarrow1=x^2\)

\(\Leftrightarrow x^2=1\)

\(\Rightarrow x=\pm1\)

Vậy nghiệm phương trình là: {1; -1}

4) \(\left|x^2-3x+1\right|=2x-3\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+1=2x-3\\x^2-3x+1=-\left(2x-3\right)\end{cases}}\)

Xét  trường hợp này rồi làm tiếp, dễ rồi :))

14 tháng 12 2016

\(\frac{\left(2x^3+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)

\(=\frac{2x\left(x^2+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)

\(=\frac{2\left(x^2+1\right)\left(x-2\right)}{\left(x+2\right)\left(x+1\right)}\)

Thay x=\(\frac{1}{2}\)

\(=\frac{2\left(\frac{1}{2}^2+1\right)\left(\frac{1}{2}-2\right)}{\left(\frac{1}{2}+2\right)\left(\frac{1}{2}+1\right)}\)

\(=-1\)