Mọi ng giúp em với ạ :(
Cho đường tròn tâm O , hai dây AB và CD(AB>CD) cắt nhau tại M. Gọi H và K lần lượt là là trung điểm của AB và CD. So sánh MK và MH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: HA = HB (gt)
Suy ra : OH ⊥ AB (đường kính dây cung)
Lại có : KC = KD (gt)
Suy ra : OK ⊥ CD (đường kính dây cung)
Mà AB > CD (gt)
Nên OK > OH (dây lớn hơn gần tâm hơn)
Áp dụng định lí Pitago vào tam giác vuông OHM ta có :
O M 2 = O H 2 + H M 2
Suy ra : H M 2 = O M 2 - O H 2 (1)
Áp dụng định lí Pitago vào tam giác vuông OKM ta có:
O M 2 = O K 2 + K M 2
Suy ra: K M 2 = O M 2 - O K 2 (2)
Mà OH < OK (cmt) (3)
Từ (1), (2) và (3) suy ra: H M 2 > K M 2 hay HM > KM
Bài tập 13 trang 106 SGK Toán 9 Tập 1 - H7.net
Câu a: Ta có:
AH=HB⇒OH⊥AB
KC=KD⇒OK⊥CD
Lại có:
AB=CD⇒OH=OK
⇒ΔHOE=ΔKOE(ch.cgv)
⇒EH=EK(1)
Câu b: Ta lại có:
AB=CD⇔AB2=CD2⇔AH=CK(2)
Từ (1) và (2):
⇒EH+HA=EK+KC⇔EA=EC
a. Ta có: HA = HB ( gt )
Suy ra : \(OH\perp AB\) ( đường kính dây cung )
Lại có : KC = KD ( gt )
Suy ra : \(OK\perp CD\)( đường kính dây cung )
Mà AB > CD ( gt )
Nên OK > OH ( dây lớn hơn gần tâm hơn )
Áp dụng định lí Pitago vào tam giác vuông OHM ta có :
OM2 = OH2 + HM2
Suy ra : HM2 = OM2 – OH2 (1)
Áp dụng định lí Pitago vào tam giác vuông OKM ta có:
OM2 = OK2 + KM2
Suy ra: KM2 = OM2 – OK2 (2)
Mà OH < OK ( cmt ) (3)
Từ (1) (2) và (3) suy ra: HM2 > KM2 hay HM > KM
a. Ta có: HA = HB (gt)
Suy ra : \(OH\perp AB\) (đường kính dây cung)
Lại có : KC = KD (gt)
Suy ra : \(OK\perp CD\) (đường kính dây cung)
Mà AB > CD (gt)
Nên OK > OH (dây lớn hơn gần tâm hơn)
Áp dụng định lí Pitago vào tam giác vuông OHM ta có :
OM2 = OH2 + HM2
Suy ra : HM2 = OM2 – OH2 (1)
Áp dụng định lí Pitago vào tam giác vuông OKM ta có:
OM2 = OK2 + KM2
Suy ra: KM2 = OM2 – OK2 (2)
Mà OH < OK (cmt) (3)
Từ (1), (2) và (3) suy ra: HM2 > KM2 hay HM > KM