Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) ( a,b,c khác 0, \(a\ne b,c\ne d\))
chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Ta có: \(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}\left(b\ne-d;b\ne-3d;b\ne0;d\ne0\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
+, \(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}=\dfrac{a+3c-\left(a+c\right)}{b+3d-\left(b+d\right)}=\dfrac{a+3c-a-c}{b+3d-b-d}=\dfrac{2c}{2d}=\dfrac{c}{d}\)
Khi đó: \(\dfrac{a+c}{b+d}=\dfrac{c}{d}\)
+, \(\dfrac{a+c}{b+d}=\dfrac{c}{d}=\dfrac{a+c-c}{b+d-d}=\dfrac{a}{b}\) (đpcm)
a: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
hay \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) \(\left(1\right)\)
Tương tự :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) khi \(\dfrac{a}{b}=\dfrac{c}{d}\)
Đặt: a/b = c/d = k => a = bk, c = dk
Ta có:
a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1)
c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2)
Từ (1) và (2) => a+b/a-b = c+d/c-d
Từ \(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)
\(\Rightarrow ad+a^2+bd+ba=bc+bd+c^2+cd\)
\(\Rightarrow a^2+a\left(b+d\right)=c^2+c\left(b+d\right)\)
Vì đt trên bằng nhau : \(\Rightarrow a\left(b+d\right)=c\left(b+d\right)\Leftrightarrow a=c\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\) và \(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-b}{b}=\dfrac{b\left(k-1\right)}{b}=k-1\\\dfrac{c-d}{d}=\dfrac{d\left(k-1\right)}{d}=k-1\end{matrix}\right.\)\(\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
c) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
d) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow1+\dfrac{a}{b}=1+\dfrac{c}{d}\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\left(đpcm\right)\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k\) ;\(c=d\cdot k\)
=>\(\dfrac{a+b}{b}=\dfrac{b\cdot k+b}{b}=\dfrac{b\cdot\left(k+1\right)}{b}=k+1\) (1)
=>\(\dfrac{c+d}{d}=\dfrac{d\cdot k+d}{d}=\dfrac{d\cdot\left(k+1\right)}{d}=k+1\) (2)
Từ (1) và (2) => \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Giải:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow k=\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\) ( tính chất dãy tỉ số bằng nhau )
\(\Rightarrow k^2=\left(\dfrac{a-c}{b-d}\right)^2=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\) (1)
và \(k^2=\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{ac}{bd}\) (2)
Từ (1), (2) \(\Rightarrow\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)
Vậy...
Đề sai rồi bạn ạ
Phải là : Cho\(\dfrac{a}{b}=\dfrac{c}{d}\) với c≠±1. Chứng minh rằng \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ac}{bd}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)Suy ra: \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}=\dfrac{\left[k\left(b-d\right)\right]^2}{\left(b-d\right)^2}\)=k2 (1)
\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{k^2.bd}{bd}=k^2\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ac}{bd}\)
Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(VT=\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
\(VP=\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)