Chứng minh rằng tồn tại một bội số của 2003 có dạng
2004 2004 …….2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2003 số có dạng 2004, 20042004, 200420042004, ..., 2004200420042004...2004 (2003 lần số 2004).
TH1: Nếu có 1 số chia hết cho 2003 thì ta có đpcm.
TH2: Nếu không có số nào chia hết cho 2003 thì có ít nhất 2 số có cùng số dư khi chia cho 2003. Gọi 2 số đó là \(a_i=20042004...2004\) (i lần số 2004) và \(a_j=20042004...2004\) (j lần số 2004)
\(\Rightarrow a_i-a_j=2004..200400..000\vdots 2003\) (i-j lần số 2004 và 4j lần số 0)
\(\Leftrightarrow 20042004...2004.10^{4j}\vdots 2003\)
mà \((10^{4j}, 2003)=1\)
Suy ra ta có đpcm.
Bài 2 nè
Xét 2004 số
2004
20042004
...
20042004...2004(2004 số 2004)
Theo nguyên lý Đi-rích-lê,tồn tại 2 số khi chia cho 2003 có cùng số dư.Gọi 2 số đó là m và n
Ta có:20042004...2004-20042004...2004\(⋮\)2003
(m số 2004) (n số 2004)
=>20042004...2004.104n\(⋮\)2003
(m-n số 2004)
mà 104n và 2003 nguyên tố cùng nhau
=>20042004...2004\(⋮\)2003(đpcm)
(m-n số 2004)
taco: (a+2003).(a trừ 2003)=(b+2004).(b trừ 2004)
<=>(a+2003).(b trừ 2004)=(a trừ 2003).(b+2004)
<=>ab trừ 2004.a +2003.b trừ 4014012=ab+2004.a trừ 2003.b 4014012(hằng đẳng thức đáng nhớ)
<=>4006.b=4008.a(chyển vế đổi dấu)
<=>2003.b=2004.a(cùng bớt 2)
=>a/2003=b/2004(đpcm)
Xét dãy số sau:
2003; 20032003;....; 20032003...2003 (Có n số 2003; n > 2004 )
Nhận xét: các số trong dãy đều là các số lẻ nên không chia hết cho 2004
=> Số bất kì trong dãy chia cho 2004 có thể dư 1;2;3;..; 2003
Dãy trên có nhiều hơn 2003 số nên theo Nguyên lý Dirichlê => có ít nhất 2 số chia cho 2004 có cùng số dư
=> số có dạng 20032003...2003...2003 (có 2003 + m số 2003 ) và số 2003..2003 (có m số 2003 ) có cùng số dư
=> Hiệu của chúng chia hết cho 2004
Hay số 20032003...200300..00 (có 2003 số 2003 ) chia hết cho 2004
Xét dãy số gồm 2005 số hạng:
2003, 20032003, ...2003.....(2003 con số 2003).. 2003,
- xét phép chia từng số hạng của dãy trên cho số 2004 (2005 phép chia được thực hiện), khi đó chỉ có thể xảy ra 2004 số dư 1, 2, 3.....2004 ( không có dư 0 vì 2003..2003 không thể chia hết cho 2004 lí do 2004 là số chẳn chia hết cho 2, trong khi số có dạng 2003...2003 lẻ, không thể chia hết cho 2 => tất nhiên k thể chia hết cho 2004).
- từ suy luận trên ta thấy có ít nhất hai phép chia trong 2005 phép chia có cùng số dư,
giả sử hai số hạng thỏa đk trên là A và B (A<B)
hay gọi dạng cụ thể là: A=2003...2003 (n số 2003), B=2003..2003 (m số 2003), m>n
khi đó xét số D=B-A=2003...2003..000 (có n số 2003 và m-n số 0 ) , rõ ràng là D chia hết cho 2004
Kết luận : tồn tại số theo đề bài cần chứng minh
Từng bài 1 thôi nhs!
a) 3A = 3 - 32 + 33 - 34 + ... -32004+ 32005
3A + A = 3 - 32 + 33 -34 + ... -32004 + 32005 +1 - 3 + 32- 33 + 34 - ....-32003+32004
4A = 32005 + 1
=> 4A - 1 = 32005 là lũy thừa của 3
=> ĐPCM
đề có thiếu ko đó
A = 4 + 23 + 24 + 25 + ...+ 22003 + 22004
đặt B = 23 + 24 + 25 + ...+ 22003 + 22004
2B= 24 + 25 + 26 + ....+ 22004 + 22005
2B-B= ( 24 + 25 + 26 + ....+ 22004 + 22005 ) - ( 23 + 24 + 25 + ...+ 22003 + 22004 )
B = 24 + 25 + 26 + ....+ 22004 + 22005 - 23 - 24 - 25 - ...- 22003 - 22004
B = 22005 - 23
B = 22005 - 8
=> A = 4 + B = 4 + 22005 - 8 = 22005 - 4 = .....
A=2001.2002.2003.2004+1
ta có:2001.2002.2003.2004 có tận cùng là 4
=>2001.2002.2003.2004=10k+4
=>A=10k+4+1=10k+5=5(2k+1) chia hết cho 5
=>A là hợp số