K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

mình ko biet làm nha

27 tháng 10 2023

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau

31 tháng 12 2023

Gọi ƯCLN(12n + 1;30n + 4) = d . Ta có :

  12n + 1 ⋮ d => 5(12n + 1) = 60n + 5 ⋮ d

  30n + 4 ⋮ d => 2(30n + 4) = 60n + 8 ⋮ d

=> (60n + 8) - (60n + 5) ⋮ d

=> 3 ⋮ d => d ∈ Ư(3) ∈ {1;3} ( Vì ƯCLN ko có số nguyên âm)

Mặt khác :12n + 1 không chia hết cho 3 (Vì 12n ⋮ 3 nhưng 1 ko chia hết cho 3)

=> d = 1 . Vậy 2 số sau là 2 số nguyên tố cùng nhau 

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

25 tháng 3 2021

đừng để anh nóng hơi mệt đấy

23 tháng 11 2015

gọi d>0 là ước dung của 2n+1 và 6n+5

d là ước số 3(2n+1)=6n+3

(6n+5)_(6n+3)=2

suy ra d là ước của số lẻ :2n+1 suy ra d=1

vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau

**** nhé Thanh Lộc thông minh

20 tháng 12 2016

Gọi d ƯC(12n + 1, 30n + 2} (d ∈ N)

Ta có:

(12n + 1)⋮d và (30n + 2)⋮d

=> 5(12n + 1)⋮d và 2(30n + 2)⋮d

=> (60n + 5)⋮d và (60n + 4)⋮d

=> [(60n + 5) - (60n + 4)]⋮d

=> 1⋮d

=> d ∈ Ư(1)

=> d ∈ {1}

=> ƯC(12n + 1, 30n + 2) = {1}

=> ƯCLN(12n + 1, 30n + 2) = 1

Vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.

 

21 tháng 1