K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

1. a) \(8x^3-32x=8x\left(x^2-4\right)=8x\left(x-4\right)\left(x+4\right)\)

b) \(y^3+64+\left(y+4\right)\left(y-16\right)=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)=\left(y+4\right)\left(y^2-4y+16+y-16\right)\)

\(=\left(y-4\right)\left(y^2-3y\right)=\left(y-4\right)y\left(y-3\right)\)

2) a)

\(4x^3-9x=0\)

\(\Leftrightarrow x\left(4x^2-9\right)=0\)

\(\Leftrightarrow x\left(2x+3\right)\left(2x-3\right)=0\)

<=> x=0 hoặc 2x+3=0 hoặc 2x-3=0

<=> x=0 hoặc x=-3/2 hoặc x=3/2

b) \(A=x^3-9x^2+27x-27=x^3-3.x^2.3+3.x.3^2-3^3=\left(x-3\right)^3\)

Tại x=203

A=(203-3)3=2003

22 tháng 10 2018

Bài 1 :

a) \(8x^3-32x\)

\(=8x\left(x^2-4\right)\)

\(=8x\left(x-2\right)\left(x+2\right)\)

b) \(y^3+64+\left(y+4\right)\left(y-16\right)\)

\(=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4x+16+y-16\right)\)

\(=\left(y+4\right)\left(y^2+y-4x\right)\)

Bài 2 :

a) \(4x^3-9x=0\)

\(x\left(4x^2-9\right)=0\)

\(x\left[\left(2x\right)^2-3^2\right]=0\)

\(x\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=\frac{-3}{2}\end{cases}}}\)

P.s: ở trên dùng ngoặc vuông nhé

b) \(A=x^3-9x^2+27x-27\)

\(A=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)

\(A=\left(x-3\right)^3\)

Thay x = 203 vào biểu thức ta có :

\(A=\left(203-3\right)^3\)

\(A=200^3\)

\(A=8000000\)

29 tháng 5 2018

Bài làm:

a, 1-4x2

=1-(2x)2

=(1-2x).(1+2x)

b, 8-27x3

=23-(3x)3

=(2-3x).(4+6x+9x2)

Các câu còn lại bạn dùng hằng đẳng thức là phân tích được ra thôi

29 tháng 5 2018

1 - 4x^2 

= 1^2 - ( 2x )^2 

= ( 1 - 2x ) ( 1 + 2x ) 

8 - 27x^ 3 

= 2^3 - ( 3x )^3 

= ( 2 - 3x ) [ 2^2 + 2 * 3x + ( 3x )^2 ]

= ( 2 - 3x ) ( 4 + 6x + 9x^2 ) 

= ( 2 - 3x ) ( 9x^2 + 6x + 4 ) 

27 + 27x + 9x^2 + x^3 

= x^3 + 9x^2 + 27x + 27 

= x^3 + 3x^2 + 6x^2 + 18x + 9x + 27 

= x^2 ( x + 3 ) + 6x ( x + 3 ) + 9 ( x + 3 ) 

= ( x + 3 ) ( x^2 + 6x + 9 ) 

= ( x + 3 ) ( x + 3 )^2 

= ( x + 3 )^3 

x^2 + 4x - 5 

= x^2 - x + 5x - 5 

= x ( x - 1 ) + 5 ( x - 1 ) 

= ( x + 1 ) ( x - 5 ) 

17 tháng 12 2023

Bài 1

a) 5x²y - 20xy²

= 5xy(x - 4y)

b) 1 - 8x + 16x² - y²

= (1 - 8x + 16x²) - y²

= (1 - 4x)² - y²

= (1 - 4x - y)(1 - 4x + y)

c) 4x - 4 - x²

= -(x² - 4x + 4)

= -(x - 2)²

d) x³ - 2x² + x - xy²

= x(x² - 2x + 1 - y²)

= x[(x² - 2x+ 1) - y²]

= x[(x - 1)² - y²]

= x(x - 1 - y)(x - 1 + y)

= x(x - y - 1)(x + y - 1)

e) 27 - 3x²

= 3(9 - x²)

= 3(3 - x)(3 + x)

f) 2x² + 4x + 2 - 2y²

= 2(x² + 2x + 1 - y²)

= 2[(x² + 2x + 1) - y²]

= 2[(x + 1)² - y²]

= 2(x + 1 - y)(x + 1 + y)

= 2(x - y + 1)(x + y + 1)

17 tháng 12 2023

Bài 2:

a: \(x^2\left(x-2023\right)+x-2023=0\)

=>\(\left(x-2023\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2023=0

=>x=2023

b: 

ĐKXĐ: x<>0

\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)

=>\(-x\left(x-4\right)+2x^2-4x-9=0\)

=>\(-x^2+4x+2x^2-4x-9=0\)

=>\(x^2-9=0\)

=>(x-3)(x+3)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

c: \(x^2+2x-3x-6=0\)

=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d: 3x(x-10)-2x+20=0

=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)

=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)

=>\(\left(x-10\right)\left(3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)

Câu 1:

a: \(5x^2y-20xy^2\)

\(=5xy\cdot x-5xy\cdot4y\)

\(=5xy\left(x-4y\right)\)

b: \(1-8x+16x^2-y^2\)

\(=\left(16x^2-8x+1\right)-y^2\)

\(=\left(4x-1\right)^2-y^2\)

\(=\left(4x-1-y\right)\left(4x-1+y\right)\)

c: \(4x-4-x^2\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\)

d: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

e: \(27-3x^2\)

\(=3\left(9-x^2\right)\)

\(=3\left(3-x\right)\left(3+x\right)\)

f: \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)

a: =(6x)^2-(3x-2)^2

=(6x-3x+2)(6x+3x-2)

=(9x-2)(3x+2)

d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)

\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)

=8x(x^2+1)

e: =(4x)^2-2*4x*3y+(3y)^2

=(4x-3y)^2

f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)

\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)

g: =(4x)^3+1^3

=(4x+1)(16x^2-4x+1)

k: =x^3(27x^3-8)

=x^3(3x-2)(9x^2+6x+4)

l: =(x^3-y^3)(x^3+y^3)

=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)

17 tháng 11 2018

\(\left(x-1\right)^2-25\)

\(=x^2-2x+1-25\)

\(=x^2-2x-24\)

\(=x^2-6x+4x-24\)

\(=x.\left(x-6\right)+4.\left(x-6\right)\)

\(=\left(x+4\right).\left(x-6\right)\)

17 tháng 11 2018

a, \(1-2y+y^2=\left(y+1\right)^2=\left(y+1\right)\left(y+1\right)\)

b, \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)

c, \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)

d,  \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)

26 tháng 8 2023

\(1-27x^3\)

\(=1-\left(3x\right)^3\)

\(=\left(1-3x\right)\left(1+3x+9x^2\right)\)

\(---\)

\(x-3^3+27\)

\(=x-27+27=x\) 

\(---\)

\(27x^3+27x^2+9x+1\)

\(=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3\)

\(=\left(3x+1\right)^3\)

\(---\)

\(\dfrac{x^6}{27}-\dfrac{x^4y}{3}+x^2y^2-y^3\) (sửa đề)

\(=\left(\dfrac{x^2}{3}\right)^3-3\cdot\left(\dfrac{x^2}{3}\right)^2\cdot y+3\cdot\dfrac{x^2}{3}\cdot y^2-y^3\)

 \(=\left(\dfrac{x^2}{3}-y\right)^3\)

#Ayumu

26 tháng 8 2023

1-27x\(^3\)

=(1-3x)(1+3x+9x\(^2\)

19 tháng 8 2019

a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)

\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)

c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)

19 tháng 8 2019

b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)

11 tháng 8 2021

1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)

2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)

\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)

3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)

\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)

1) Ta có: \(x^3+2x^2-6x-27\)

\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+5x+9\right)\)

2: Ta có: \(9x^2+6x-4y^2-4y\)

\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(3x+2y+2\right)\)

NV
3 tháng 1

a.

\(x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b.

\(x^3-9x^2+6x+16=\left(x^3-7x^2-8x\right)-\left(2x^2-14x-16\right)\)

\(=x\left(x^2-7x-8\right)-2\left(x^2-7x-8\right)\)

\(=\left(x-2\right)\left(x^2-7x-8\right)=\left(x-2\right)\left(x^2+x-8x-8\right)\)

\(=\left(x-2\right)\left[x\left(x+1\right)-8\left(x+1\right)\right]=\left(x-2\right)\left(x+1\right)\left(x-8\right)\)

c.

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+10+2\right)-24\)

\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10\right)^2-4\left(x^2+7x+10\right)+6\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+10-4\right)+6\left(x^2+7x+10-4\right)\)

\(=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)