Xét biểu thức: A = \(\sqrt{x-5}\)
a. Với giá trị nào của x thì A có nghĩa ?
b. Với giá trị nào của x thì A= 0 ? A= 4 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK<3
1a/ Để B có nghĩa thì x+1≥0 => x≥-1
b/ B>2
=> \(\sqrt{x+1}>2\)
\(\Rightarrow x+1>4\Rightarrow x>3\)
2a/ Để A có nghĩa thì 2003-x≥0 => x≤2003
b/ Ta có \(\sqrt{2003-x}\ge0\forall x\)
=>A≥2004
MinA=2004 khi x=2003
Chúc bạn học tốt!
a) Để a có nghĩa khi và chỉ khi
x - 5 \(\ge0\Rightarrow x\ge5\)
b) với A = 0
=> \(\sqrt{x-5}=0\)
=> x - 5 = 0
=> x= 5
Vậy x = 5 thì A = 0
(+) với A = 4
=> \(\sqrt{x-5}=4\)
=> x- 5 = 4^2
=> x - 5 = 16
=> x = 21
Vậy x = 21 thì A = 4
a) Ta có:
\(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\) Q có nghĩa khi:
\(\left(1-3x\right)\left(x+\dfrac{1}{2}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x\ge0\\x+\dfrac{1}{2}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-3x\le0\\x+\dfrac{1}{2}\le\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\le1\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}3x\ge1\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}\le x\le\dfrac{1}{3}\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{3}\)
b) Ta có: \(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\)
\(Q=\sqrt{x+\dfrac{1}{2}-3x^2-\dfrac{3}{2}x}\)
\(Q=\sqrt{-\left(3x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)}\)
\(Q=\sqrt{-3\left(x^2+\dfrac{1}{6}x-\dfrac{1}{6}\right)}\)
\(Q=\sqrt{-3\left(x^2+2\cdot\dfrac{1}{12}\cdot x+\dfrac{1}{144}-\dfrac{25}{144}\right)}\)
\(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\)
Mà: \(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\le\sqrt{\dfrac{25}{144}}=\dfrac{5}{12}\)
Dấu "=" xảy ra khi:
\(\Leftrightarrow-3\left(x+\dfrac{1}{12}\right)^2=0\)
\(\Leftrightarrow x+\dfrac{1}{12}=0\)
\(\Leftrightarrow x=-\dfrac{1}{12}\)
Vậy: \(Q_{max}=\dfrac{5}{12}.khi.x=-\dfrac{1}{12}\)
a, Để A có nghĩa
\(\Leftrightarrow x^2-1\ne0\)
\(\Rightarrow\orbr{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
\(b,A=\frac{\left(x-1\right)\left(x-3\right)}{x^2-1}\)
\(A=\frac{\left(x-1\right)\left(x-3\right)}{\left(x+1\right)\left(x-1\right)}\)
\(A=\frac{\left(x-3\right)}{\left(x+1\right)}\)
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi