K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó; MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

b: Ta có: ΔONC cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)NC tại I

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2\)

=>\(OH\cdot OM=R^2\)

Xét ΔOIM vuông tại I và ΔOHK vuông tại H có

\(\widehat{IOM}\) chung

Do đó: ΔOIM đồng dạng với ΔOHK

=>\(\dfrac{OI}{OH}=\dfrac{OM}{OK}\)

=>\(OI\cdot OK=OH\cdot OM=R^2\)

=>\(OI\cdot OK=OC\cdot OC\)

=>\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)

Xét ΔOIC và ΔOCK có

\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)

\(\widehat{IOC}\) chung

Do đó: ΔOIC đồng dạng với ΔOCK

=>\(\widehat{OIC}=\widehat{OCK}\)

=>\(\widehat{OCK}=90^0\)

=>KC là tiếp tuyến của (O)

31 tháng 12 2023

thank bro

12 tháng 12 2023

a: Xét tứ giác MAIC có

\(\widehat{MAI}+\widehat{MCI}=90^0+90^0=180^0\)

=>MAIC là tứ giác nội tiếp

=>\(\widehat{AMC}+\widehat{AIC}=180^0\left(1\right)\)

Ta có: AM\(\perp\)AB

BN\(\perp\)AB

Do đó: AM//BN

=>\(\widehat{AMN}+\widehat{CNB}=180^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{CIA}=\widehat{CNB}\)

Xét (O) có

\(\widehat{CAB}\) là góc nội tiếp chắn cung CB

\(\widehat{CBN}\) là góc tạo bởi tiếp tuyến BN và dây cung BC

Do đó: \(\widehat{CAB}=\widehat{CBN}\)

Xét ΔCAI và ΔCBN có

\(\widehat{CAI}=\widehat{CBN}\)

\(\widehat{CIA}=\widehat{CNB}\)

Do đó: ΔCAI đồng dạng với ΔCBN

b: Xét tứ giác ICNB có \(\widehat{ICN}+\widehat{IBN}=90^0+90^0=180^0\)

nên ICNB là tứ giác nội tiếp

=>\(\widehat{IBC}=\widehat{INC}\)

=>\(\widehat{CBA}=\widehat{CNI}\)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔCAB vuông tại C và ΔCIN vuông tại C có

\(\widehat{CBA}=\widehat{CNI}\)

Do đó: ΔCAB đồng dạng với ΔCIN

c: Ta có: MAIC là tứ giác nội tiếp

=>\(\widehat{MAC}=\widehat{MIC}\)

Ta có: NCIB là tứ gáic nội tiếp

=>\(\widehat{NIC}=\widehat{NBC}\)

Ta có: \(\widehat{MIN}=\widehat{MIC}+\widehat{NIC}\)

\(=\widehat{MAC}+\widehat{NBC}\)

\(=90^0-\widehat{CAB}+90^0-\widehat{CBA}\)

\(=180^0-90^0=90^0\)