Bải 1 :Rút gọn :
\(M=\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\)\(\left(\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\right)\)
Bài 2 : Rút gọn :
\(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\)\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
Bài 1:
\(M=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(x-1\right)}{\sqrt{x}}\)
=2
Bài 2:
\(P=\dfrac{x+1+\sqrt{x}}{x+1}:\dfrac{x+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)