Tìm các số nguyên x, y, z biết rằng: \(\frac{x}{5}=\frac{4}{y}=\frac{z}{-80}=\frac{42}{105}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{42}{105}=\frac{2}{5}\)
=> \(\frac{x}{5}=\frac{4}{y}=\frac{z}{-80}=\frac{2}{5}\)
=> x=\(\frac{2}{5}\cdot5=2\)
y\(=4:\frac{2}{5}=4\cdot\frac{5}{2}=10\)
z=\(\frac{2}{5}\cdot\left(-80\right)=-32\)
tick nha
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
\(\frac{-x}{4}=\frac{12}{16}\Rightarrow-x=\frac{12\cdot4}{16}=3\Rightarrow x=-3\)
\(\frac{21}{y}=\frac{12}{16}\Rightarrow y=\frac{21\cdot16}{12}=28\)
\(\frac{z}{-80}=\frac{12}{16}\Rightarrow z=\frac{-80\cdot12}{16}=-60\)
\(\frac{12}{16}=\frac{-x}{4}\Rightarrow-x=\frac{12.4}{16}=\frac{48}{16}=3\Rightarrow x=-3\)
\(\frac{3}{4}=\frac{21}{y}\Rightarrow y=\frac{21.4}{3}=\frac{84}{3}=28\)
\(\frac{21}{28}=\frac{z}{-80}\Rightarrow z=\frac{-80.21}{28}=\frac{-1680}{28}=-60\)
Vậy x = - 3 ; y = 28 ; z = - 60
Rút gọn phân số : \(\frac{12}{16}=\frac{12:4}{16:4}=\frac{3}{4}\)
Ta có : \(\frac{3}{4}=\frac{x}{4}\)
\(\Rightarrow3=x\Leftrightarrow x=3\)
Ta lại có : \(\frac{3}{4}=\frac{21}{y}\)
\(\Rightarrow3y=84\)
\(\Rightarrow y=84:3=28\)
Ta lại có : \(\frac{3}{4}=\frac{z}{80}\)
\(\Rightarrow3\cdot80=4z\)
\(\Rightarrow z=\frac{3\cdot80}{4}=60\)
Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)
Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2
Do đó:\(x=2.8=16\)
\(y=12.2=24\)
\(z=15.2=30\)
Vậy \(x=16\);\(y=24\);\(z=30\)
Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)
\(\Rightarrow\)\(x=2.k\);\(y=5.k\)
Vì \(x.y=10\)nên \(2k.5k=10\)
\(\Rightarrow\)\(10.k^2=10\)
\(\Rightarrow\)\(k^2=1\)
\(\Rightarrow\)\(k=1\)hoặc\(k=-1\)
+) Với \(k=1\)thì \(x=2\);\(y=5\)
+) Với \(k=-1\)thì \(x=-2\);\(y=-5\)
Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=10\)
Ta có :
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được :
\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)
Với \(y=5\Rightarrow x=\frac{2.5}{5}=2\)
Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)
Bài 1 :
Vì \(\frac{12}{16}=\frac{-x}{4}\).Nên \(-x.16=12.4\)
\(-x.16=48\)
\(-x\) \(=48:16\)
\(-x=3\)
Vậy \(x=-3\)
-Vì \(\frac{12}{16}=\frac{21}{y}\) nên \(12.y=16.21\)
\(12.y=336\)
\(y=336:12\)
\(y=28\)
Vì \(\frac{12}{16}=\frac{z}{-80}\) nên \(16.z=12.\left(-80\right)\)
\(16.z=-960\)
\(z=-960:16\)
\(z=-60\)
Vậy \(x=-3,y=28,z=-60\)
Chúc bạn học tốt ( -_- )
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x+3y-z}{2.15+3.20-28}=\frac{186}{62}=3\)
Suy ra: \(\frac{x}{15}=3\Rightarrow x=3.15=45\)
\(\frac{y}{20}=3\Rightarrow y=3.20=60\)
\(\frac{z}{28}=3\Rightarrow z=3.28=84\)
Vậy x=45, y=60, z=84
x=1
y=5
z=9
x = 1 y= 5 z = 9