Bài 2:Tìm giá trị lớn nhất của biểu thức sau: B= -|x+3/4|-3 Giúp tớ đi trc buổi chiều nha Thank❤
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(|x-\dfrac{2}{3}|-\dfrac{1}{2}\)
A = \(\left[{}\begin{matrix}x-\dfrac{2}{3}-\dfrac{1}{2}\\-\left(x-\dfrac{2}{3}\right)-\dfrac{1}{2}\end{matrix}\right.\)
A = \(\left[{}\begin{matrix}x-\dfrac{1}{6}\\-x+\dfrac{2}{3}-\dfrac{1}{2}\end{matrix}\right.\)
A = \(\left[{}\begin{matrix}x-\dfrac{1}{6}\\-x+\dfrac{1}{6}\end{matrix}\right.\)
TH1: \(x-\dfrac{1}{6}\) có giá trị nhỏ nhất khi \(x-\dfrac{1}{6}=0\) với x = \(\dfrac{1}{6}\)
TH2: \(-x+\dfrac{1}{6}\) có giá trị nhỏ nhất khi \(-x+\dfrac{1}{6}=0\) với x = \(\dfrac{1}{6}\)
Vậy A đạt giá trị nhỏ nhất khi \(x=\dfrac{1}{6}\)
Vì \(\left(2x-3\right)^2\ge0\forall x\)nên :
\(C=\frac{-4}{\left(2x-3\right)^2+5}\ge\frac{-4}{5}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
Vậy \(C_{min}=\frac{-4}{5}\Leftrightarrow x=\frac{3}{2}\)
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
để A có GTLN thì 2(x-1)2 + 3 phải bé nhất
mà 2(x-1)2 luôn > hoặc = 0
=> A có GTLN thì 2(x-1)2 + 3 = 3
=> x=1
GTLN of A là 1/3 khi và chỉ khi x = 1
để B có GTLN thì 17-x > 0 và bé nhất
=> 17-x = 1
=> x = 16
GTLN của B = 1 khi và chỉ khi x=16
Bài 1: \(C=3m^2-6m=3m^2-6m+3-3\)
\(=3\left(m^2-2m+1\right)-3\)
\(=3\left(m-1\right)^2-3\ge-3\forall m\)
Vậy: Min C = -3 tại m = 1
Bài 2: \(a,\left(x+3\right)^2-\left(x-3\right)\left(x+3\right)=5\)
\(\Leftrightarrow x^2+6x+9-x^2+9=5\)
\(\Leftrightarrow6x=-13\)
\(\Leftrightarrow x=-\frac{13}{6}\)
Tương tự bài anh trước anh làm nha em
\(-\left|x+\dfrac{3}{4}\right|\le0\Rightarrow B=-\left|x+\dfrac{3}{4}\right|-3\le-3\)
\(maxB=-3\Leftrightarrow x=-\dfrac{3}{4}\)