Phân tích đa thức thành nhân tử :'
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2-a^3-b^3-c^3+4abc\)
Mọi người ơi . giúp mình với , mình cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^7+x^5+1\)
\(=x^7-x+x^5-x^2+x^2+x+1\)
\(=x\left(x^6-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)]
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+x^2\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[x\left(x^4-x^3+x-1\right)+x^3-x^2+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
b) \(x^5-x^4-1\)
\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
Phân tích đa thức thành nhân tử \(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2-4abc\)
bn tick cho mik trước đi mik giải chi tiết ra cho
Câu hỏi của Access_123 - Toán lớp 8 - Học toán với OnlineMath
a^3(c−b^2)+b^3(a−c^2)+c^3(b−a^2)+abc(abc−1)
=a^3c−a^3b^2+b^3(a−c^2)+bc^3−a^2c^3+a^2b^2c^2−abc
=(a^3c−a^2c^3)+b^3(a−c^2)−(a^3b^2−a^2b^2c^2)+(bc^3−abc)
=a^2c(a−c^2)+b^3(a−c^2)−a^2b^2(a−c^2)−bc(a−c^2)
=(a^2c+b^3−a^2b^2−bc)(a−c2)
=[c(a^2−b)−b^2(a^2−b)](a−c^2)=(a^2-b)(c-b^2)(a-c^2)
1) \(\left(a-b\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)
a3(c - b2) + b3(a - c2) + c3(b - a2) + abc(abc - 1)
= a3c - a3b2 + ab3 - b3c2 + bc3 - a2c3 + a2b2c2 - abc
= a2b2c2 - b3c2 - (a2c3 - bc3) - (a3b2 - ab3) + (a3c - abc)
= b2c2(a2 - b) - c3(a2 - b) - ab2(a2 - b) + ac(a2 - b)
= (a2 - b)(b2c2 - c3 - ab2 + ac) = (a2 - b)[c2(b2 - c) - a(b2 - c)] = (a2 - b)(b2 - c)(c2 - a)
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2-a^3-b^3-c^3+4abc\)
\(=a\left(b-c\right)^2-a^3+4abc+b\left(c-a\right)^2-b^3+c\left(a-b\right)^2-c^3\)
\(=a\left[\left(b-c\right)^2+4bc-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)
\(=a\left[\left(b+c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)
\(=a\left(b+c+a\right)\left(b+c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[a\left(b+c+a\right)+b\left(c-a-b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[ab+ac+a^2+bc-ab-b^2\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[c\left(a+b\right)+\left(a-b\right)\left(a+b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left(a+b\right)\left(a-b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(a-b+c\right)\left[b^2-\left(a-c\right)^2\right]\)
\(=\left(a-b+c\right)\left(b+a-c\right)\left(b-a+c\right)\)