Tìm x
\(\dfrac{x-291}{1700}\)+\(\dfrac{x-293}{1698}\)+\(\dfrac{x-295}{1696}\)+\(\dfrac{x-297}{1694}\)=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt x -3 = a
<=> a(a+2)(a+8)(a+10) - 297=0
<=> \(\left[a\left(a+10\right)\right]\left[\left(a+2\right)\left(a+8\right)\right]\)-297=0
<=> \(\left(a^2+10a\right)\left(a^2+10a+16\right)-297=0\)
Đặt \(a^2+10a=b\)
\(b^2+16b-297=0\)
\(\Rightarrow\left[{}\begin{matrix}b=11\\b=-27\end{matrix}\right.\)\(b=11\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
b= -27 \(\Rightarrow a=\varnothing\Rightarrow x=\varnothing\)
b) bấm máy ra nhân tử chung :D
c)
\(\Leftrightarrow\left(\frac{1927-X}{91}+1\right)+\left(\frac{1925-x}{93}+1\right)+...=0\)
\(\Leftrightarrow\frac{2018-x}{91}+\frac{2018-x}{93}+\frac{2018-x}{95}+\frac{2018-x}{97}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
<=> x = 2018
d) \(\Leftrightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-3\right)=0\)
giống câu c
a,2/5 = 2/5 ; 3/8=6/16 ; 1/9=3/27
b, 4/3=8/6 ; -1=-1 ; -4/-2=-8/4
tick cho mik nhé
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)
\(=>x+1=0\)
\(=>x=-1\)
b,
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)
\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)
\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)
\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)
Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)
\(=>x+2021=0\)
\(=>x=-2021\)
c,
\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)
\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)
Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)
\(=>x+329=0\)
\(=>x=-329\)
Lời giải:
$\frac{x}{3}-\frac{1}{4}=\frac{-5}{6}$
$\frac{x}{3}=\frac{1}{4}-\frac{5}{6}=\frac{-7}{12}$
$x=\frac{-7}{12}.3=\frac{-7}{4}$
-------------------
$\frac{2x}{3}=\frac{6}{x}$ ($x\neq 0$)
$\Rightarrow 2x^2=18$
$x^2=18:2=9=(-3)^2=3^2$
$\Rightarrow x=\pm 3$
---------------------
$\frac{x-1}{14}=\frac{4}{x}$ ($x\neq 0$)
$\Rightarrow x(x-1)=14.4=56$
$x^2-x-56=0$
$(x+7)(x-8)=0$
$\Rightarrow x+7=0$ hoặc $x-8=0$
$\Leftrightarrow x=-7$ hoặc $x=8$
---------------------------
$\frac{-x}{8}=\frac{-50}{x}$ ($x\neq 0$)
$\Rightarrow -x^2=8(-50)$
$x^2=400=20^2=(-20)^2$
$\Rightarrow x=\pm 20$
a: =>1/2x-3/4x=-5/6+7/3
=>-1/4x=14/6-5/6=3/2
=>x=-3/2*4=-6
b: =>4/5x-3/2x=1/2+6/5
=>-7/10x=17/10
=>x=-17/7
c: =>6/5x+6/20=6/5-1/3x
=>6/5x+1/3x=6/5-3/10=12/10-3/10=9/10
=>x=27/46
d: =>6x+3/2+4/5=1/2-2x
=>8x=1/2-3/2-4/5=-1-4/5=-9/5
=>x=-9/40
\(x-\dfrac{1}{2}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}+\dfrac{1}{2}\)
\(x=\dfrac{5}{4}\)
\(x+\dfrac{7}{8}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}-\dfrac{7}{8}\)
\(x=\dfrac{-1}{8}\)
\(\dfrac{1}{2}\cdot x-\dfrac{1}{4}=\dfrac{-1}{2}\)
\(\dfrac{1}{2}\cdot x=\dfrac{-1}{2}+\dfrac{1}{4}\)
\(\dfrac{1}{2}\cdot x=\dfrac{-1}{4}\)
\(x=\dfrac{-1}{4}\div\dfrac{1}{2}\)
\(x=\dfrac{-1}{2}\)
Câu D ko bt
a, 2/5 + 3/4 : x = -1/2
3/4 : x = -1/2 - 2/5
3/4 : x = -9/10
x = 3/4 : -9/10
x = -5/6
b, 5/7 - 2/3 . x = 4/5
2/3 . x = 4/5 + 5/7
2/3 . x = 53/35
x = 53/35 : 2/3
x = 159/70
trừ hai vế của PT cho 4 . ta được
\(\dfrac{x-291}{1700}-1+\dfrac{x-293}{1698}-1+\dfrac{x-295}{1696}-1+\dfrac{x-297}{1694}-1=4-4\)
<=> \(\dfrac{x-291-1700}{1700}+\dfrac{x-293-1698}{1698}+\dfrac{x-295-1696}{1696}+\dfrac{x-297-1694}{1694}=0\)
<=> \(\dfrac{x-1991}{1700}+\dfrac{x-1991}{1698}+\dfrac{x-1991}{1696}+\dfrac{x-1991}{1694}=0\)
<=> (x-1991)\(\left(\dfrac{1}{1700}+\dfrac{1}{1698}+\dfrac{1}{1696}+\dfrac{1}{1694}\right)=0\)
<=> x - 1991 = 0 ( vì \(\dfrac{1}{1700}+\dfrac{1}{1698}+\dfrac{1}{1696}+\dfrac{1}{1694}\)luôn lớn hơn 0 với mọi x)
<=> x = 1991
vậy x=1991