Bài 1: Cho tam giác ABC có AB = AC. kẻ AE là tia phân giác của góc BAC ( E thuộc BC). CMR:
a) Tam giác ABE = tam giác ACE
b) AE là đường trung trực của đoạn thằng BC.
Bài 2: Cho tam giác ABC, đường cao AH. Trên nửa mặt phảng bờ AC không chứa B, vẽ tam giác ACD sao cho AD = BC; CD = AB. CMR:
a) AB song song với CD
b) AH vuông góc với AD.
Bài 3: Cho tam giác ABC vuông tại A. Biết tam giác ABC = tam giác DEF; tam giác DEF = tam giác HIK và AB = 2cm; DF = 2cm. CMR: Tam giác HIK là tam giác vuông cân.
Bài 4: Cho tam giác ABC = tam giác DEF. Biết 2 tia phân giác của góc B và góc C cắt nhau tại O tạo thành góc BOC = 135 độ và góc B = 2 lần góc C. Tính các góc của tam giác DEF.
( bạn tự vẽ hình)
a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.
a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.