Giải các phương trìnha/ \(x^2+8=3\sqrt{x^3+8}\)
b/ \(\sqrt{7+3x}+\sqrt{13-3x}+5\sqrt{\left(7+3x\right)\left(13-3x\right)}=46\)
c/ \(\sqrt[11]{x-4}+\sqrt[11]{x-5}+\sqrt[11]{2x-9}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\) (x≥0) Đặt \(\sqrt{2x}\) = a ( a>0 )
Khi đó pt :
<=> 7+a =3 + \(\sqrt{5}\)
<=> 4+a = \(\sqrt{5}\)
<=> (4+a)\(^2\) = 5
<=> 16 + 8a + a\(^2\) = 5
<=>a\(^2\) + 8a+ 11 = 0
<=> a = -4 + \(\sqrt{5}\) (Loại) và a = -4-\(\sqrt{5}\)(Loại)
Vậy Pt vô nghiệm.
b) \(\sqrt{3x^2-4x}\) = 2x-3
<=> 3x\(^2\)- 4x = 4x\(^2\)-12x + 9
<=> x\(^2\)-8x+9 = 0
<=> x=1 , x=9
Vậy S={1;9}
c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}\) = 2
<=> \(\dfrac{\left(\sqrt{7-x}\right)^3+\left(\sqrt{x-5}\right)^3}{\sqrt{7-x}+\sqrt{x-5}}=2\)
<=> \(\dfrac{\left(\sqrt{7-x}+\sqrt{x-5}\right)\left(7-x-\sqrt{\left(7-x\right)\left(x-5\right)}+x-5\right)}{\sqrt{7-x}+\sqrt{x-5}}=2\)
<=> \(\sqrt{\left(7-x\right)\left(x-5\right)}=0\)
<=> x=7,x=5
Vậy x=5 hoặc x=7
a: Ta có: \(\sqrt{4-3x}=8\)
\(\Leftrightarrow4-3x=64\)
\(\Leftrightarrow3x=-60\)
hay x=-20
b: ta có: \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
\(\Leftrightarrow2\sqrt{x-2}-12\cdot\dfrac{\sqrt{x-2}}{3}=-1\)
\(\Leftrightarrow x-2=\dfrac{1}{4}\)
hay \(x=\dfrac{9}{4}\)
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
a: =>\(\sqrt{3x-5}+2=x+1\)
\(\Leftrightarrow\sqrt{3x-5}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\x^2-2x+1-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b: \(\Leftrightarrow x-15\sqrt{x}+56=x+11\)
=>-15 căn x=-45
=>x=9
c: =>căn 3x+1=3x-1
\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\9x^2-6x+1-3x-1=0\end{matrix}\right.\Leftrightarrow x=1\)
d: =>(3x+7)/(x+3)=16
=>16x+48=3x+7
=>13x=-41
=>x=-41/13
a) \(x^2+8=3\sqrt{x^3+8}\)
\(\left(x^2+8\right)^2=\left(3\sqrt{x^2+8}\right)^2\)
\(x^4+16x^2+64=9x^2+72\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)