chi đa thức 1 biến đã sắp xếp:
(2x3-4x2+3x+12):(x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
\(B\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+4\)
b: \(A\left(x\right)+B\left(x\right)=4x^5-2x^4-4x^3+7x^2+2x+10\)
\(A\left(x\right)-B\left(x\right)=6x^5-6x^4+x^2+4x+2\)
a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm
a: P(x)=x^3+x^2+x+2
Q(x)=-x^3+x^2-x+1
b: M(x)=P(x)+Q(x)
=x^3+x^2+x+2-x^3+x^2-x+1
=2x^2+3
N(x)=x^3+x^2+x+2+x^3-x^2+x-1
=2x^3+2x+1
c: M(x)=2x^2+3>=3>0 với mọi x
=>M(x) ko có nghiệm
a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)
b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)
\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)
c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)
\(\Rightarrow M\left(x\right)\) không có nghiệm
a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(=x^3+x^2+x+2\)
Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(=-x^3-4x^2-x+1\)
b: Ta có: M(x)=P(x)+Q(x)
\(=x^3+x^2+x+2-x^3-4x^2-x+1\)
\(=-3x^2+3\)
Ta có N(x)=P(x)-Q(x)
\(=x^3+x^2+x+2+x^3+4x^2+x-1\)
\(=2x^3+5x^2+2x+1\)
a: P(x)=x^3-x^2+x+2
Q(x)=-x^3+x^2-x+1
b: M(x)=P(x)+Q(x)=x^3-x^2+x+2-x^3+x^2-x+1=3
N(x)=P(x)-Q(x)
=x^3-x^2+x+2+x^3-x^2+x-1
=2x^3-2x^2+2x+1
c: M(x)=3
=>M(x) ko có nghiệm
a: \(P\left(x\right)=2x^3-x^3+x^2+3x-2x+2=x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^3-4x^2+5x^2+3x-4x+1=-x^3+x^2-x+1\)
b: M(x)=P(x)+Q(x)
\(=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)
N(x)=P(x)-Q(x)
\(=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)
c: Vì \(2x^2+3>0\forall x\)
nên M(x) vô nghiệm
a, \(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=-x^3+x^2-x+1\)
b, \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)
\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)
c, giả sử \(M\left(x\right)=2x^2+3=0\)( vô lí )
vì 2x^2 >= 0 ; 2x^2 + 3 > 0
Vậy giả sử là sai hay đa thức M(x) ko có nghiệm
\(a,P\left(x\right)=2x^3-x+x^2-x^3+3x+5\\ =\left(2x^3-x^3\right)+x^2+\left(-x+3x\right)+5\\ =x^3+x^2+2x+5\\ Q\left(x\right)=3x^3+4x^2+3x-4x^3-5x^2+10\\ =\left(3x^3-4x^3\right)+\left(4x^2-5x^2\right)+3x+10\\ =-x^3-x^2+3x+10\\ b,M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^3+x^2+2x+5-x^3-x^2+3x+10\\ =\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(2x+3x\right)+\left(5+10\right)=5x+15\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)=x^3+x^2+2x+5-\left(-x^3-x^2+3x+10\right)\\ =x^3+x^2+2x+5+x^3+x^2-3x-10\\ =\left(x^3+x^3\right)+\left(x^2+x^2\right)+\left(2x-3x\right)+\left(5-10\right)\\ =2x^3+2x^2-x-5\)
`a,P(x)= 2x^3 -x+x^2 -x^3 +3x+5`
`= (2x^3 -x^3)+x^2+(-x+3x) +5`
`= x^3 +x^2 + 2x+5`
`Q(x)=3x^3 +4x^2+3x-4x^3-5x^2+10`
`= (3x^3-4x^3)+(4x^2-5x^2)+3x+10`
`= -x^3 -x^2+3x+10`
`b,M(x)=P(x)+Q(x)`
`->M(x)=(x^3 +x^2 + 2x+5)+(-x^3 -x^2+3x+10)`
`=x^3 +x^2 + 2x+5+(-x^3) -x^2+3x+10`
`=(x^3 -x^3)+(x^2 -x^2)+(2x+3x)+(5+10)`
`= 5x+15`
`N(x)=P(x)-Q(x)`
`->N(x)=(x^3 +x^2 + 2x+5)-(-x^3 -x^2+3x+10)`
`=x^3 +x^2 + 2x+5-x^3 +x^2-3x-10`
`=(x^3-x^3)+(x^2+x^2)+(2x-3x)+(5-10)`
`=2x^2 -x-5`
a: P(x)=4x^5-4x^5-2x^3+x^4-3x^2+4x^2+3x-5x+1
=x^4-2x^3+x^2-2x+1
Q(x)=x^7-x^7-2x^6+2x^6+2x^3-2x^4+2x^4+x^5-x^5-x+5
=2x^3-x+5
b: P(x)+Q(x)
=x^4-2x^3+x^2-2x+1+2x^3-x+5
=x^4+x^2-3x+6
P(x)-Q(x)
=x^4-2x^3+x^2-2x+1-2x^3+x-5
=x^4-4x^3+x^2-x-4
* f(x) = x2 + 2x3− 7x5 − 9 − 6x7 + x3 + x2 + x5 − 4x2 + 3x7
= (x2+ x2 – 4x2)+ (2x3 + x3 ) - (7x5 - x5 ) – 9 – (6x7 – 3x7)
= - 2x2 + 3x3 – 6x5 – 9 – 3x7
Sắp xếp theo thứ tự tăng của biến: f(x) = −9 − 2x2 + 3x3 − 6x5 − 3x7
* g(x) = x5 + 2x3 − 5x8 − x7 + x3 + 4x2 -5x7 + x4 − 4x2 − x6 – 12
= x5+ (2x3 + x3) - 5x8 – (x7+ 5x7) + (4x2 – 4x2 ) + x4 – x6 – 12
= x5 + 3x3 – 5x8 – 6x7 + x4 – x6 – 12
Sắp xếp theo thứ tự tăng của biến: g(x) = −12 + 3x3 + x4 + x5 – x6 − 6x7− 5x8
* h(x) = x + 4x5 − 5x6 − x7 + 4x3 + x2 − 2x7 + x6 − 4x2 − 7x7 + x.
= (x+ x) +4x5 – (5x6 – x6)- (x7 + 2x7+ 7x7) + 4x3+ (x2 – 4x2)
= 2x + 4x5 - 4x6 – 10x7 + 4x3 -3x2
Sắp xếp theo thứ tự tăng của biến: h(x) = 2x − 3x2 + 4x3 + 4x5 − 4x6 − 10x7
(2x3-4x2+3x+12)=(x+2).(2x2-8x+21)-30
MK ko bk đúng ko nhé