K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

A B C M E

Xét tam giác ABC cân tại A có AM là trung tuyến 

=> AM đồng thời là đường cao

=> AM ⊥ BC hay AMC = 900 (1)

Xét tứ giác AECM có AC giao ME tại D

mà D đồng thời là trung điểm của AC và ME

=> tứ giác AECM là hình bình hành (2)

Từ (1) và (2) => AECM là hình chữ nhật

b) Vì AECM là hình chữ nhật

=> AE // BC (3)

Xét tam giác ABC có D là trung điểm của AC; M là trung điểm của BC

=> DM là đường trung bình của tam giác ABC

=> DM // AB (4)

Từ (3) và (4) => AEMB là hình bình hành ( đpcm )

c) ko hiểu đề :))

8 tháng 11 2018

c,

Hình chữ nhật AECM là hình vuông khi \(AC\perp EM\Rightarrow AC\perp AB\) (vì EM // AB ) \(\Rightarrow\widehat{BAC}=90^0\)

Vậy tam giác ABC vuông cân tại A thì AECM là hình vuông

17 tháng 12 2021

a: Xét tứ giác AMCE có 

D là trung điểm của AC

D là trung điểm của ME

Do đó: AMCE là hình bình hành

mà MA=MC

nên AMCE là hình thoi

19 tháng 12 2021

còn câu b ạ 

 

a: Xét tứ giác AECM có

N là trung điểm chung của AC và EM

nên AECM là hình bình hành

c: Để AECM là hình vuông thì góc CAM=45 độ và CM=MA

=>ΔBAC vuông cân tại C

26 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

26 tháng 12 2021

a: Xét ΔABC có

M là trung điểm của AB

 N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

a: Xét ΔCAB có CE/CA=CM/CB

nên ME//ABvà ME=AB/2

=>ME//AD và ME=AD

=>ADME là hình bình hành

mà góc DAE=90 độ

nên ADME là hình chữ nhật

b: ADME là hình chữ nhật

=>AM=DE
c: BC=15cm

=>AM=15/2=7,5cm

=>DE=7,5cm

d: Xét tứ giác AMCF có

E là trung điểm chung của AC và MF

MA=MC

Do đó: AMCF là hình thoi

29 tháng 12 2022

loading...  

a) Do E và M đối xứng qua D

⇒ D là trung điểm EM

Do D là trung điểm AB

M là trung điểm BC (AM là đường trung tuyến)

⇒DM là đường trung bình của ∆ABC

⇒DM // AC

Mà AC vuông góc AB

⇒DM vuông góc AB

Hay EM vuông góc AB tại D

⇒AB là đường trung trực của EM

Hay E và M đối xứng qua AB

b) Do D là trung điểm AB (gt)

D là trung điểm EM (cmt)

⇒AEBM là hình bình hành

Mà AB vuông góc EM (cmt)

⇒AEBM là hình thoi

c) Do BC = 4 (cm)

⇒BM = BC : 2

= 4 : 2

= 2 (cm)

Chu vi AEBM:

2 . 4 = 8 (cm)