K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2022

a: Ta có:ΔOCD cân tại O

mà OM là đường cao

nên M là trung điểm của CD

Xét tứ giá ACED có

M là trung điểm chung của AE và DC

AE vuông góc với CD

Do đó: ACED là hình thoi

b: OC=R=6,5cm

MO=6,5-4=2,5cm

=>CM=6(cm)

=>CD=12cm

15 tháng 11 2019

Hình như phần c sử dụng hệ thức lượng ý :)

7 tháng 12 2021

a) Ta có: đường kính AB vuông góc với dây CD tại M (gt) (1)

⇒MC=MD(2)⇒MC=MD(2)

Mà MA = ME (E đối xứng với A qua M) (3)

Từ (2), (3) ⇒⇒ Tứ giác ACED là hình bình hành (4)

Từ (1), (2) ⇒AB⇒AB là đường trung trực của CD

⇒⇒ Điểm E nằm trên đường trung trực AB cách đều 2 đầu mút C và D ⇒EC=ED⇒EC=ED (5)

Từ (4), (5) ⇒⇒ Tứ giác ACED là hình thoi

b) Ta có: AB = 2R = 2 . 6,5 = 13 (cm)

⇒MB=AB−MA=13−4=9(cm)⇒MB=AB−MA=13−4=9(cm)

Theo hệ thức lượng ta có:

MC2 = MA . MB = 4 . 9 = 36

⇔MC=√36=6(cm)⇔MC=36=6(cm)

Từ (2) ⇒MC=MD=CD2⇒MC=MD=CD2

⇔CD=2MC=2.6=12(cm)

em mới học lớp 5 ạ

7 tháng 12 2021

giúp mik vs huhuhuhu

18 tháng 12 2023

a: E đối xứng A qua H

=>H là trung điểm của AE

Ta có: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

Xét tứ giác ACED có

H là trung điểm chung của AE và CD

=>ACED là hình bình hành

Hình bình hành ACED có AE\(\perp\)CD

nên ACED là hình thoi

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB

Ta có: AC\(\perp\)CB

DE//AC(ACED là hình thoi)

Do đó: DE\(\perp\)BC tại I

=>ΔEIB vuông tại I

=>I nằm trên đường tròn tâm O', đường kính EB

Ta có: OO'+O'B=OB

=>O'O=OB-O'B=R1-R2

=>(O) và (O') tiếp xúc trong với nhau tại B

c: ΔDIC vuông tại I

mà IH là đường trung tuyến

nên HI=HD

=>ΔHID cân tại H

=>\(\widehat{HID}=\widehat{HDI}=90^0-\widehat{DCB}\)

Ta có: O'E=O'I

=>ΔO'EI cân tại O'

=>\(\widehat{O'IE}=\widehat{O'EI}\)

mà \(\widehat{O'EI}=\widehat{HED}\)(hai góc đối đỉnh)

và \(\widehat{HED}=\widehat{DCB}\)(=90 độ-CDE)

nên \(\widehat{O'IE}=\widehat{DCB}\)

Ta có: \(\widehat{HIO'}=\widehat{HIE}+\widehat{O'IE}\)

\(=90^0-\widehat{DCB}+\widehat{DCB}=90^0\)

=>HI là tiếp tuyến của (O')

Chứng minh cái gì vậy bạn?

Chứng minh cái gì vậy bạn?