K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2021

Câu 1:

Quy ước gen: A hạt vàng.              a hạt xanh 

c) ta sẽ cho cây đậu Hà Lan hạt vàng đó đi lai phân tích

- Nếu đời con đồng tính thì cá thể trội đem lai là thuần chủng.

- Nếu đời con có sự phân tính thì cá thể trội đem lai không thuần chủng

Bài 2:

Quy ước gen: A tóc xoăn.                a tóc thẳng 

                     B mắt nâu.                  b mắt xanh

b) kiểu gen người con trai tíc thẳng mắt xanh: aabb

-> mỗi bên P cho ra 1 loại giao tử : ab

Mà kiểu hình P:+ bố tóc xoăn mắt nâu -> kiểu gen : AaBb

                          +mẹ tóc thẳng mắt nâu -> kiểu gen: aaBb

c) giao tử gen bố: AB,Ab,aB,ab

   Giao tử gen mẹ : aB,ab

10 tháng 1

LÀM ƠN GIÚP MIK ĐI MÀ, NĂN NỈ CÁC BẠN ĐÓ!!!!!!!!!!!!!!!!!!!!!!

19 tháng 12 2022

Câu 2:
1.Do xy\(\perp\)CD mà zt\(\perp\)CD
\(=>xy//zt\)
2.\(=>\widehat{ABt}=\widehat{mAy}=46\left(haigocdongvi\right)\)

c: Gọi hai số cần tìm là x,y

Theo đề, ta có: \(9< 2x< y< 12\)

=>2x=10 và y=11

=>x=5 và y=11

d: Gọi hai số cần tìm là x,y

Theo đề, ta có: \(-15< 2x< y< -12\)

=>2x=-14 và y=-13

=>x=-7 và y=-13

3 tháng 9 2021

a) \(A=\sqrt{1-x}+\sqrt{1+x}\)

\(\Rightarrow A^2=1-x+1+x+2\sqrt{\left(1-x\right)\left(1+x\right)}=2+2\sqrt{1-x^2}\)

Do \(-x^2\le0\Rightarrow1-x^2\le1\Rightarrow A^2=2+2\sqrt{1-x^2}\le2+2=4\)

\(\Rightarrow A\le2\)

 

\(maxA=2\Leftrightarrow x=0\)

Áp dụng bất đẳng thức: \(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)(với \(x,y\ge0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge x+y\)

\(\Leftrightarrow x+y+2\sqrt{xy}\ge x+y\Leftrightarrow2\sqrt{xy}\ge0\left(đúng\right)\)

\(A=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)

\(maxA=\sqrt{2}\Leftrightarrow\)\(\left[{}\begin{matrix}1-x=0\\1+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

 

3 tháng 9 2021

Cho mình sửa dòng cuối là \(minA=\sqrt{2}\) nhé

Bài 1: 

a: Xét tứ giác BEDF có 

ED//BF

ED=BF

Do đó: BEDF là hình bình hành

Suy ra: BE=DF

c: ta có: BEDF là hình bình hành

nên Hai đường chéo EF và BD cắt nhau tại trung điểm của mỗi đường

mà AC và BD cắt nhau tại trung điểm của mỗi đường

nên AC,BD,EF đồng quy

17 tháng 8 2023

Bài 4:

a, F(\(x\)) = m\(x\) + 3 có nghiệm \(x\) = 2

⇔ F(2) = 0 ⇔ m.2 + 3 = 0 

                      2m       = -3

                       m = - \(\dfrac{3}{2}\)

b, F(\(x\)) = m\(x\) - 5 có nghiệm \(x\) = 3 ⇔ F(3) = 0

              ⇔3m - 5 = 0 ⇒ m = \(\dfrac{5}{3}\)

c, F(\(x\)) = \(x^2\) + a\(x\) + b có 2 nghiệm phân biệt \(x\) = 1; \(x\) = 0

⇔ \(\left\{{}\begin{matrix}0+0+b=0\\1+a+b=0\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}b=0\\a=-1\end{matrix}\right.\)

 

                    

Câu 23:

a: Ta có: \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{5\sqrt{x}}{\sqrt{x}+3}=\dfrac{22}{x-9}\)

Suy ra: \(x+5\sqrt{x}+6-5x+15\sqrt{x}-22=0\)

\(\Leftrightarrow-4x+20\sqrt{x}-16=0\)

\(\Leftrightarrow x-5\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=16\left(nhận\right)\end{matrix}\right.\)

12 tháng 9 2021

1.

d, ĐK: \(x\ge-5\)

\(x-2-4\sqrt{x+5}=-10\)

\(\Leftrightarrow x+5-4\sqrt{x+5}+3=0\)

\(\Leftrightarrow\left(\sqrt{x+5}-1\right)\left(\sqrt{x+5}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+5}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+5=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)

\(\Leftrightarrow x=\pm4\left(tm\right)\)

12 tháng 9 2021

2.

ĐK: \(x\in R\)

\(\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|x+1\right|+\left|x-2\right|=3\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).

\(\left|x+1\right|+\left|x-2\right|=\left|x+1\right|+\left|2-x\right|\ge\left|x+1+2-x\right|=3\)

Đẳng thức xảy ra khi:

\(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Leftrightarrow-1\le x\le2\)