Tìm n\(\in N\)có 16 ước biết n chia hết cho 6 và 125
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n = 2x \(\times\) 3y \(\times\)53+z có (x+1)(y+1)(4+z) = 16
\(\Rightarrow\)z = 0
x = 1
y = 1
\(\Rightarrow\) n = 2 \(\times\) 3 \(\times\) 53 = 750.
N = 2x.3y.53+z có (x+1)(y+1)(4+z) =16
=> z=0
x=1
y=1
=>N= 2.3.53 = 750
2/
$n\vdots 65, n\vdots 125$
$\Rightarrow n=BC(65,125)$
$\Rightarrow n\vdots BCNN(65,125)$
$\Rightarrow n\vdots 1625$
$\Rightarrow n=1625k$ với $k$ tự nhiên.
$n=1625k=5^3.13.k$
Nếu $k=1$ thì $n$ có $(3+1)(1+1)=8$ ước (loại)
Nếu $k>1$ thì $n$ có ít nhất $(3+1)(1+1)(1+1)=16$ ước nguyên tố.
$n$ có đúng 16 ước nguyên tố khi mà $k$ là 1 số nguyên tố.
Vậy $n=1625p$ với $p$ là số nguyên tố.
Gọi d là UCLN của 2n+1 và 3n+1
Ta có :
\(2n+1⋮d\)
\(3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)⋮d\)
\(\Rightarrow2\left(3n+1\right)⋮d\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)