Cho M=1+2+2^2+...+2^99. Chứng tỏ rằng M+1 có 31 chữ số khi viết trong hệ thập phân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
2^100 = ﴾2^10﴿^10 = 1024^10
10^30 = ﴾10^3﴿^10 = 1000^10
Vì 1024^10 > 1000^10 nên 2^100 > 10^30 ﴾1﴿
Lại có:
2^100 = 2^31.2^63.2^6 = 2^31.512^7.64
và 10^31 = ﴾2.5﴿^31 = 2^31.5^31 = 2^31.5^28.5^3 = 2^31.625^7.125
Vì 2^31.512^7.64 < 2^31.625^7.125 nên 2^100 < 10^31﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ => 2^100 viết trong hệ thập phân có 31 chữ số
Vậy số 2^100 viết trong hệ thập phân có 31 chữ số ﴾đpcm﴿
NHỚ TK MK NHA,MK ĐANG ÂM ĐIỂM
Ta có \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1000^{10}=\left(10^3\right)^{10}=10^{30}\).
Ta chứng minh \(2^{100}< 10^{31}\Leftrightarrow\dfrac{1024^{10}}{1000^{10}}< 10\).
Ta có \(\dfrac{1024^{10}}{1000^{10}}< \dfrac{1025^{10}}{1000^{10}}=\left(\dfrac{41}{40}\right)^{10}\).
Dễ thấy \(\dfrac{41}{40}< \dfrac{40}{39}< ...< \dfrac{32}{31}\Rightarrow\left(\dfrac{41}{40}\right)^{10}< \dfrac{41}{40}.\dfrac{40}{39}...\dfrac{32}{31}=\dfrac{41}{31}< 10\Rightarrow\dfrac{1024^{10}}{1000^{10}}< 10\).
Do đó \(2^{100}\) viết trong hệ thập phân có 31 chữ số.
Ta có:
2100 = (210)10 = 102410
1030 = (103)10 = 100010
Vì 102410 > 100010 nên 2100 > 1030 (1)
Lại có:
2100 = 231.263.26 = 231.5127.64
và 1031 = (2.5)31 = 231.531 = 231.528.53 = 231.6257.125
Vì 231.5127.64 < 231.6257.125 nên 2100 < 1031 (2)
Từ (1) và (2) => 2100 viết trong hệ thập phân có 31 chữ số
Vậy số 2100 viết trong hệ thập phân có 31 chữ số (đpcm)
Ta có:210=1024>103=>2100>1030 (1)
Mặt khác: 210=1024<1025=>2100<102510
=>\(\frac{2^{100}}{10^{30}}=\left(\frac{2^{10}}{10^3}\right)^{10}<\left(\frac{1025}{10^3}\right)^{10}=\left(\frac{41}{40}\right)^{10}\)
Ta đã biết:Nếu 0<b<a thì ab+b<ab+a
=>b(a+1)<a(b+1)
=>\(\frac{a+1}{b+1}<\frac{a}{b}\) (*)
Áp dụng (*) ta có: \(\frac{41}{40}<\frac{40}{39}<\frac{39}{38}<...<\frac{32}{31}<\frac{31}{30}\)
do đó \(\frac{2^{100}}{10^{30}}=\left(\frac{41}{40}\right)^{10}<\frac{40}{39}.\frac{39}{38}....\frac{32}{31}.\frac{31}{30}=\frac{4}{3}<2\)
=>2100<2.1030 (2)
Từ (1);(2)=>1030<2100<2.1030
=>2100 có tất cả 31 chữ số,nếu viết trong hệ thập phân thì 2100 có 30 chữ số
Để ý rằng 4^5 = 1024 nên ta có : 10^3 < 4^5 < 11.10^2
---> 10^15 < 4^25 < (11^5).10^10 < 200000.10^10 = 2.10^15
---> 10^30 < 4^50 < 4.10^30 < 10^31 ---> 4^50 có 31 chữ số.
---> 4^50 = m.10^30 (với 1 < m < 4)
Lại để ý rằng (4^50)(25^50) = 100^50 = 10^100
---> 25^50 = 10^100 / 4^50 = (10.10^99) / (m.10^30) = (10/m).10^69
Vì 1 < m < 4 ---> 2,5 < 10/m < 10
---> 25^50 = (10/m).10^69 có 70 chữ số.
---> Đáp án bài này là 31 + 70 = 101 chữ số.
k cho mình nhé chép mạng đó