K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017
Vì 8p-1 là số nguyên tố Theo bảng nguyên tố hai số nguyên tố duy nhất cạnh nhau là 2 và 3 Suy ra hai 8p+1 là hợp số
2 tháng 1 2017

Don gian

2 tháng 1 2017

Xét p dưới dạng : 3k (khi đó p =3) ,3k +1,3k +2 (k thuộc N). Dạng thứ ba không thỏa mãn đề bài (vì khi đó 8p -1 là hợp số), hai dạng trên đều cho 8p + 1 là hợp số

tk nha bạn

8 tháng 10 2021

Ta có:

Nếu \(p=2\Rightarrow8p-1=15\)   là hợp số:

Nếu\(p=3\Rightarrow8p-1=23\)là số nguyên tố và\(8p+1=25\)là hợp số 

Nếu \(p>3\Rightarrow p=3k+1;p=3k+2\left(k\in N\right)\)

Với: \(p=3k+1\left(k\in N\right)\Rightarrow8p+1=8\left(3k+1+1\right)=24k+9=3\left(8k+3\right)>3\)và \(⋮3\)nên \(8p+1\)là hợp số

Với: \(p=3k+2\left(k\in N\right)\Rightarrow8p-1=8\left(3k+2\right)-1=24k+15=3\left(8k+5\right)>3\)và \(⋮3\)nên \(8p-1\)là hợp số. ( vô lý )

Vậy \(8p+1\)là hợp số khi \(8p-1\)và \(p\)là các số nguyên tố

8 tháng 10 2021

Tl

= 8p-1,p là số nguyên tố nha bn

Hok tốt

13 tháng 11 2016

=>p có dạng 3k+2(vì nếu p= 3k+1 => 8p -1 là hợp số)

=>8p-1 = 3k+2 -1 =3k+1 (số nguyên tố)

=>8p+1 là số nguyên tố

 Nếu p = 3 thì: 8p + 1 = 8.3 + 1 = 25, 25 chia hết cho 5 nên 8p + 1 không là số nguyên tố.
- Nếu p không chia hết cho 3 thì 8p cũng chia hết cho 3.
Ta có 8p -1; 8p ; 8p + 1 là số tự liên tiếp nên sẽ có một số chia hết cho 3. Do 8p không chia hết cho 3 nên 8p -1 hoặc 8p + 1 chia hết cho 3.

24 tháng 10 2018

what sup did men ?

24 tháng 10 2018

ta có : nếu P=3 suy ra :8P+1=25 chia hết cho 5

                                    8P-1=23(số nguyên tố)

Vậy P=3 thỏa mãn yêu cầu của đề bải

nếu P >3 =>P;P+1:P-1 sẽ phải có 1 số chia hết cho 3 mà P là số nguyên tố lớn hơn 3=>P-1 hoắc P+1 chia hết cho 3=>(P-1)(P+1) chia hết cho 3

=>(8P-1)(8P+1) chia hết cho 3

=64p^2-1=63P^2+P^2-1=3.21P^2 chia hết cho 3

vậy 8p+1 là hớp số(chia hết cho 3)

8 tháng 12 2018

Nếu p = 2 thì 8p - 1 = 15 là hợp số 

Nếu p = 3 thì 8p + 1 = 25 là hợp số.

Nếu p > 3 thì p là số ko chia hết cho 3 nên 8p không chia hết cho 3

Xét 3 số tự nhiên liên tiếp 8p - 1 ; 8p và 8p + 1 có 1 số chắc chắn chia hết cho 3

Mà 8p không chia hết cho 3

Nên 8p - 1 hoặc 8p + 1 chia hết cho 3.

Mà p > 3 nên 8p - 1 và 8p + 1 đều lớn hơn 3.

Vậy 8p - 1 và 8p + 1 không đồng thời là số nguyên tố.

p là số nguyên tố lớn hơn 3=>p=3k+1;3k+2

xét p=3k+1=>8p+1=8(3k+1)+1=3.8k+8+1=3.8k+9=3(8k+3) chia hết cho 3

=>8p+1 là hợp số(trái giả thuyết)

=>p=3k+2

=>4p+1=4(3k+2)+1=3.4k+9=3(4k+3) chia hết cho 3

=>4p+1 là hợp số

=>đpcm