K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

bé hơn hoặc bằng 1 hay là 2 vậy bạn

13 tháng 11 2018

\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=3-\frac{1}{1+a}-\frac{1}{1+b}-\frac{1}{1+c}\le1\)

\(\Rightarrow T\frac{1}{1+a}\ge2\Rightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

T là pháp cộng với b,c luôn nha, lười ghi.

Tương tự ta có:\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\) và với c nữa

Nhân vế theo vế ta có đpcm

5 tháng 2 2020

Vì: \(0\le a\le b\le c\le1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow\frac{1}{ab+1}\le\frac{1}{a+b}\Leftrightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(1\right)\)

Tương tự ta có: \(\frac{a}{bc+1}\le\frac{a}{b+c}\left(2\right)\)

Và: \(\frac{b}{ac+1}\le\frac{b}{a+c}\left(3\right)\)

Từ: \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

Mà: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right)\)

13 tháng 11 2018

\(\frac{a^2+b^2}{a-b}=\frac{\left(a-b\right)^2+2ab}{a-b}=a-b+\frac{2ab}{a-b}=a-b+\frac{12}{a-b}\ge2\sqrt{12}=4\sqrt{3}\left(Cauchy\right)\)

10 tháng 11 2018

mình ghi nhầm cái số 1 nhỏ nha
mn nếu giải thì bỏ cái số đó đi

10 tháng 11 2018

+ ta có a,b,c thuộc [0,1] 
=> b^2 <= b và c^3 <= c 
=> a + b^2 + c^3 - ab - bc - ca <= a + b + c - (ab + bc + ca) 
+ mặt # a , b , c thuộc [0,1] 
=> (1 - a)(1 - b)(1 - c) >=0 
<> 1- a - b - c + ab + bc + ca - abc >=0 
<> a + b + c - (ab + bc + ca) <= 1 - abc 
=> a + b + c - (ab + bc + ca) <=1 (abc >= 0)

2 tháng 2 2017

Ta có: \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\le1-\frac{d}{d+1}=\frac{1}{d+1}\\\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{a}{a+1}=\frac{1}{a+1}\\\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{b}{b+1}=\frac{1}{b+1}\\\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\le1-\frac{c}{c+1}=\frac{1}{c+1}\end{matrix}\right.\)

Áp dụng BĐT Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\frac{1}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\\\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{b+1}\ge\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{c+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\end{matrix}\right.\)

Nhân từng vế:

\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\frac{a^3b^3c^3d^3}{\left(a+1\right)^3\left(b+1\right)^3\left(c+1\right)^3}}\)

\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

\(\Rightarrow1\ge81abcd\)

Vậy \(abcd\le\frac{1}{81}\left(đpcm\right)\)

p/s : lí do tớ tự trả lời câu hỏi của mình là để coi câu trả lời của mình có đúng hay ko thôi nha , mong các bạn đứng có hiểu lầm , nếu bạn nào có cách nào nhanh và gọn hơn thì phiền các bạn chỉ dùm luôn nha.

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Mình nghĩ cách làm của bạn là ok rồi đấy

Bản chất là ngắn, có điều bạn trình bày quá cẩn thận nên khiến nó dài thôi. Khuyên chân thành là nếu đi thi sau khi áp dụng quy tắc "tương tự" để đỡ tốn thời gian hơn, cũng k bị mất điểm.

Ta có: 
1/(1+a)+1/(1+b)+1/(1+c)≥2 
→1/(1+a)≥{1-1/(1+b)}+{1-1/(1+c)} 
↔1/(1+a)≥b/(1+b)+c/(1+c) 
≥2.√(bc)/{(1+b)(1+c)}(theo cosi) 
Hai bất đẳng thức tương tự rồi nhân vế với vế 
1/{(1+a)(1+b)(1+c)≥8.abc/{(1+a)(1+b)(1... 
↔abc≤1/8(dpcm)

TK NHA

19 tháng 8 2017

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)\)\(=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

Tương tự ta có: 

13 tháng 4 2020

\(vp=\frac{a\left(1+b\right)+b\left(1+a\right)}{\left(1+a\right)\left(1+b\right)}=\frac{2ab+a+b}{1+ab+a+b}\)

\(\ge\frac{a+b}{1+ab+a+b}\)

\(\ge\frac{a+b}{1+a+b}\)

16 tháng 8 2018

Vô lí vì a+b+c=0\(\Rightarrow\frac{5}{a+b+c}\)không có đáp án