K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 11 2018

Đây là câu a/

https://hoc24.vn/hoi-dap/question/693692.html?pos=1903228

Còn câu b thì như sau:

Trước hết, nghi ngờ bạn ghi sai đề ở con này \(\dfrac{1}{a^2+7a+9}\) , số 9 phải là số 12 mới hợp lý. Mình tự sửa lại đề, còn nếu đề đúng như bạn chép thì bạn giữ nguyên nó, phần còn lại rút gọn được còn đâu thì quy đồng giải trâu thôi, chẳng cách nào với đề xấu kiểu ấy cả.

\(B=\dfrac{1}{a\left(a+1\right)}+\dfrac{1}{\left(a+1\right)\left(a+2\right)}+\dfrac{1}{\left(a+2\right)\left(a+3\right)}+\dfrac{1}{\left(a+3\right)\left(a+4\right)}+\dfrac{1}{\left(a+4\right)\left(a+5\right)}\)

\(B=\dfrac{1}{a}-\dfrac{1}{a+1}+\dfrac{1}{a+1}-\dfrac{1}{a+2}+\dfrac{1}{a+2}-\dfrac{1}{a+3}+\dfrac{1}{a+3}-\dfrac{1}{a+4}+\dfrac{1}{a+4}-\dfrac{1}{a+5}\)

\(B=\dfrac{1}{a}-\dfrac{1}{a+5}=\dfrac{5}{a\left(a+5\right)}\)

15 tháng 11 2018

đúng là mk ghi sai đề thật

a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)

\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)

\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)

=-a-1

b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)

\(=\left|3a-5\right|-2a+4\)

\(=5-3a-2a+4\)

=9-5a

c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)

\(=4a-3-\left|2a-1\right|\)

\(=4a-3-2a+1\)

\(=2a-2\)

d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)

\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)

\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)

\(=-a^2\)

12 tháng 12 2021

\(M=a+\dfrac{4a+2ab+2b+b^2+4a-2ab-2b+b^2-4a}{\left(2-b\right)\left(2+b\right)}\\ M=a+\dfrac{4a+2b^2}{\left(2-b\right)\left(2+b\right)}=\dfrac{4a-ab^2+4a+2b^2}{\left(2-b\right)\left(2+b\right)}\\ M=\dfrac{8a-ab^2+2b^2}{4-b^2}\)

Ta có \(8a-b^2\left(a-2\right)=8a-\dfrac{a^2\left(a-2\right)}{\left(a+1\right)^2}=\dfrac{8a^3+16a^2+8a-a^3+2a^2}{\left(a+1\right)^2}=\dfrac{7a^3+18a^2+8a}{\left(a+1\right)^2}\)

\(4-b^2=4-\dfrac{a^2}{\left(a+1\right)^2}=\dfrac{4a^2+8a+4-a^2}{\left(a+1\right)^2}=\dfrac{3a^2+8a+4}{\left(a+1\right)^2}\)

\(\Leftrightarrow M=\dfrac{7a^3+18a^2+8a}{3a^2+8a+4}=\dfrac{a\left(7a+4\right)\left(a+2\right)}{\left(3a+2\right)\left(a+2\right)}=\dfrac{a\left(7a+4\right)}{3a+2}\)

23 tháng 12 2022

2.

\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)

ĐKXĐ là :

\(a\ne0;-3;-2\)

Vs a = 1 ta có:

=> P=3

1.

\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)

a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)

\(=7xy+3x-2y-y^2\)

b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)

\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)

c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)

\(=7a^2b-11b^2+9c^2\)

23 tháng 5 2022

\(A=5xy-y^2-2xy+4xy+3x-2y\)

\(A=-y^2+7xy+3x-2y\)

\(B=\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2+\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b-\dfrac{1}{2}ab^2\)

\(B=\dfrac{3}{8}a^2b-\dfrac{7}{8}ab^2\)

\(C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)

\(C=7a^2b-11b^2+9c^2\)

2: \(\left(\dfrac{7}{a+7}+\dfrac{a^2+49}{a^2-49}-\dfrac{7}{a-7}\right):\dfrac{a+1}{2}\)

\(=\dfrac{7a-49+a^2+49-7a-49}{\left(a-7\right)\left(a+7\right)}\cdot\dfrac{2}{a+1}\)

\(=\dfrac{a^2-49}{\left(a-7\right)\left(a+7\right)}\cdot\dfrac{2}{a+1}=\dfrac{2}{a+1}\)

3: \(=\dfrac{x^4-4x^2+4x^2}{x^2-4}\cdot\left(\dfrac{x+2}{x-4}+\dfrac{2-3x}{x\left(x^2-4\right)}\cdot\dfrac{x^2-4}{x-2}\right)\)

\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\left(\dfrac{x+2}{x-4}+\dfrac{2-3x}{x\left(x-2\right)}\right)\)

\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x^2-4\right)+\left(2-3x\right)\left(x-4\right)}{x\left(x-2\right)\left(x-4\right)}\)

\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-4x+2x-8-3x^2+12x}{x\left(x-2\right)\left(x-4\right)}\)

\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-3x^2+10x-8}{x\left(x-2\right)\left(x-4\right)}\)

\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-x^2-2x^2+2x+8x-8}{x\left(x-2\right)\left(x-4\right)}\)

\(=\dfrac{x^3\left(x-1\right)\left(x^2-2x+8\right)}{\left(x-2\right)^2\cdot\left(x+2\right)\left(x-4\right)}\)

 

 

10 tháng 7 2023

\(-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}-\dfrac{3a+1}{1-a^2}\right):\dfrac{2a+1}{a^2-1}\left(dk:a\ne1,a\ne-1\right)\)

\(=-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}+\dfrac{3a+1}{a^2-1}\right):\dfrac{2a+1}{\left(a-1\right)\left(a+1\right)}\\ =-\left(\dfrac{\left(a-1\right)^2-a\left(a+1\right)+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\dfrac{a^2-2a+1-a^2-a+3a+1}{\left(a-1\right)\left(a+1\right)}.\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\)

\(=-\dfrac{2}{2a+1}\)

11 tháng 7 2023

\(-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}-\dfrac{3a+1}{1-a^2}\right):\dfrac{2a+1}{a^2-1}\\ =-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}+\dfrac{3a+1}{a^2-1}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}+\dfrac{3a-1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{\left(a-1\right)^2}{\left(a+1\right)\left(a-1\right)}-\dfrac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\dfrac{3a+1}{\left(x-1\right)\left(x+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{\left(a-1\right)^2-a\left(a+1\right)+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\)\(=-\left(\dfrac{a^2-2a+1-\left(a^2+a\right)+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{a^2-2a+1-a^2-a+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{2}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =\dfrac{-2.\left(a-1\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right).\left(2a+1\right)}\\ =-\dfrac{2}{2a+1}\)

__

\(-\dfrac{2}{2a+1}=\dfrac{3}{a-1}\\ \Leftrightarrow-2\left(a-1\right)=3\left(2a+1\right)\\ \Leftrightarrow-2a+2-6a-3=0\\ \Leftrightarrow-8a-1=0\\ \Leftrightarrow-8a=1\\ \Leftrightarrow a=-\dfrac{1}{8}\)