Tìm ƯC(2n+1,3n+1)
Tìm ƯCLN(9n+4,2n-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi d la UCLN(2n - 1,9n + 4), ta co:
2n - 1 chia het cho d => 18n - 9
9n + 4 chia het cho d => 18n + 8
=> (18n-9) - (18n+8) chia het cho d
=> (18n - 9 - 18n - 8) chia het cho d
=> 1 chia het cho d
=> d = 1
Vay UCLN cua 2n - 1 va 9n + 4 la 1
Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17.
Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9 ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9 (k ∈ N )
- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.
và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.
Do đó ƯCLN(2n - 2 ; 9n + 4) = 17
- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1
Vậy ƯCLN(2n - 1 ; 9n + 4) = 17
- Ước chung của hai hay nhiều số là ước của tất cả các số đó.
- Bội chung của hai hay nhiều số là bội của tất cả các số đó.
- Số lớn nhất trong tập hợp các ước chung của hai hay nhiều số là ước chung lớn nhất của các số đó.
- Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó.
a,Gọi d là UCLN(2n+1;3n+2)
Ta có:
3n+2 chia hết cho d
2n+1 chia hết cho d
=> 2(3n+2)-3(n+1)=1 chia hết cho d
=> d E {-1;1}
=> 2n+1 và 3n+2 luôn nguyên tố cùng nhau
=> BCNN(2n+1,3n+2)=(2n+1)(3n+2) (ĐPCM)
b, Gọi a là UCLN(2n+1;9n+6)
=> 2n+1 chia hết cho a
9n+6 chia hết cho a
=> 2(9n+6)-9(2n+1) chia hết cho a
=> 3 chia hết cho a=> a E {3;-3;1;-1}
Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc
2n+1 chia hết cho 3 <=> n=3k+1 (k E N)
Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1
còn nếu n khác: 3k+1
=> UCLN(2n+1;9n+6)=1
ƯC 1
ƯCLN =1
a: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
b:
Sửa đề: tìm ƯCLN(9n+4;2n+1)
Gọi d=ƯCLN(9n+4;2n+1)
=>18n+8-18n-9 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ƯCLN(9n+4;2n+1)=1