K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

ƯC 1

ƯCLN =1

21 tháng 11 2022

a: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(2n+1;3n+1)={1;-1}

b:

Sửa đề: tìm ƯCLN(9n+4;2n+1)

Gọi d=ƯCLN(9n+4;2n+1)

=>18n+8-18n-9 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ƯCLN(9n+4;2n+1)=1

19 tháng 10 2015

ƯC của(2n+1,3n+1)=1
 

11 tháng 11 2017

Đinh Tuấn Việt

11 tháng 11 2017

Goi d la UCLN(2n - 1,9n + 4), ta co:

2n - 1 chia het cho d => 18n - 9

9n + 4 chia het cho d => 18n + 8

=> (18n-9) - (18n+8) chia het cho d

=> (18n - 9 - 18n - 8) chia het cho d

=> 1 chia het cho d

=> d = 1 

Vay UCLN cua 2n - 1 va 9n + 4 la 1

2 tháng 11 2018

Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1)  ⋮  d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17  ⋮  d ⇒ d ∈ {1, 17}. 

Ta có 2n - 1  ⋮  17 ⇔  2n - 18  ⋮  17 ⇔ 2(n - 9)  ⋮  17.

Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9  ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9     (k ∈ N )

- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.

     và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.

Do đó ƯCLN(2n - 2 ; 9n + 4) = 17

- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1

Vậy ƯCLN(2n - 1 ; 9n + 4) = 17

27 tháng 10 2018

a.1

b.1

c.1

1 tháng 11 2020

Giải thế ai hiểu nổi hả trời???

12 tháng 12 2023

- Ước chung của hai hay nhiều số là ước của tất cả các số đó.

- Bội chung của hai hay nhiều số là bội của tất cả các số đó.

- Số lớn nhất trong tập hợp các ước chung của hai hay nhiều số là ước chung lớn nhất của các số đó.

- Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó.

 

 
28 tháng 11 2018

a,Gọi d là UCLN(2n+1;3n+2)

Ta có:

3n+2 chia hết cho d

2n+1 chia hết cho d

=> 2(3n+2)-3(n+1)=1 chia hết cho d

=> d E {-1;1}

=> 2n+1 và 3n+2 luôn nguyên  tố cùng nhau

=> BCNN(2n+1,3n+2)=(2n+1)(3n+2)  (ĐPCM)

b, Gọi a là UCLN(2n+1;9n+6)

=> 2n+1 chia hết cho a

9n+6 chia hết cho a

=> 2(9n+6)-9(2n+1) chia hết cho a

=> 3 chia hết cho a=> a E {3;-3;1;-1}

Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc

2n+1 chia hết cho 3 <=> n=3k+1 (k E N)

Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1

còn nếu n khác: 3k+1

=> UCLN(2n+1;9n+6)=1