K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

Khó 😩 hay suy nghỉ mà đau 🦁🦁🦁🦁

13 tháng 6 2019

\(\frac{1}{\sqrt{1+a^2}}=\frac{\sqrt{bc}}{\sqrt{bc+a.abc}}=\frac{\sqrt{bc}}{\sqrt{bc+a\left(a+b+c\right)}}=\frac{\sqrt{bc}}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

Tương tự và cộng lại \(\Rightarrow P\le\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\sqrt{3}\)

29 tháng 6 2017

Đặt: \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{xyz}\)

\(\Leftrightarrow xy+yz+zx=1\)

Ta có:

\(S=\frac{\frac{1}{x}}{\sqrt{\frac{1}{y}.\frac{1}{z}\left(1+\frac{1}{x^2}\right)}}+\frac{\frac{1}{y}}{\sqrt{\frac{1}{z}.\frac{1}{x}\left(1+\frac{1}{y^2}\right)}}+\frac{\frac{1}{z}}{\sqrt{\frac{1}{x}.\frac{1}{y}\left(1+\frac{1}{z^2}\right)}}\)

\(=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)

\(=\sqrt{\frac{yz}{xy+yz+zx+x^2}}+\sqrt{\frac{zx}{xy+yz+zx+y^2}}+\sqrt{\frac{xy}{xy+yz+zx+z^2}}\)

\(=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)

\(\le\frac{1}{2}.\left(\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{x}{z+x}+\frac{y}{z+y}\right)\)

\(=\frac{1}{2}.\left(1+1+1\right)=\frac{3}{2}\)

Dấu = xảy ra khi \(x=y=z=\sqrt{3}\)

29 tháng 6 2017

Nhầm dấu = xảy ra khi \(a=b=c=\sqrt{3}\) chứ.

11 tháng 10 2017

Ta có:

\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)

\(=\frac{1}{\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(b+c\right)^2+\frac{3}{4}\left(b-c\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(c+a\right)^2+\frac{3}{4}\left(c-a\right)^2}}\)

\(\le2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\le2.\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

25 tháng 4 2020

Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)

Với x,y dương ta có 2 bất đẳng thức phụ sau:

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)

Áp dụng (*) và (**), ta có:

\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)

\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)

Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)

\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)

Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:

\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))

Đẳng thức xảy ra khi \(a=b=c\)

25 tháng 4 2020

Bạn bổ sung cho mình dòng cuối là a = b = c = 1 nhé!

12 tháng 4 2016

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v

4 tháng 4 2020

Bài 1 :

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

\(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

b) Để \(A< -1\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< -1\)

\(\Leftrightarrow\sqrt{x}-2< -\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}< 1\)

\(\Leftrightarrow\sqrt{x}< \frac{1}{2}\)

\(\Leftrightarrow x< \frac{1}{4}\)

Vậy để \(A< -1\Leftrightarrow x< \frac{1}{4}\)

31 tháng 8 2017

bạn vào đây tham khảo nè 

Câu hỏi của Tuấn Anh - Toán lớp 9 | Học trực tuyến

hơi lằng nhằng 1 chút

\(P=\frac{a}{\sqrt{a+2c}+1}+\frac{b}{\sqrt{b+2a}+1}+\frac{c}{\sqrt{c+2b}+1}\)

áp dụng cô si ta có:

\(\left(\sqrt{a+2c}+1\right)^2\le2\left(a+2c+1\right)=2\left(2a+b+3c\right)\)

tương tự \(\Rightarrow P\ge\frac{a}{\sqrt{2\left(2a+b+3c\right)}}+\frac{b}{\sqrt{2\left(2b+c+3a\right)}}+\frac{c}{\sqrt{2\left(2c+a+3b\right)}}\)

mà \(\sqrt{2\left(2a+b+3c\right)}\le\frac{2a+b+3c+2}{2}=\frac{4a+3b+5c}{2}\)

\(\Rightarrow P\ge\frac{2a}{4a+3b+5c}+\frac{2b}{4b+3c+5a}+\frac{2c}{4c+3a+5b}\)

\(=\frac{2a^2}{4a^2+3ab+5ac}+\frac{2b^2}{4b^2+3bc+5ab}+\frac{2c^2}{4c^2+3ac+5bc}\ge\frac{2\left(a+b+c\right)^2}{4\left(a+b+c\right)^2}=\frac{1}{2}\)