\(CMR:x^6+x^4-2x^2⋮72vớix\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f: x+y+z=3
=>x^2+y^2+z^2+2(xy+xz+yz)=9
=>2(xy+yz+xz)=6
=>xy+yz+xz=3
mà x+y+z=3
nên x=y=z=1
e: x^2+y^2+2=2(x+y)
=>(x+y)^2-2xy+2-2(x+y)=0
=>(x+y)(x+y-2)-2(xy-1)=0
=>x=y=1
Ta có:
\(x\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\)
\(\Leftrightarrow\) \(\left[x.\left(x+a\right)\right]\left[\left(x-a\right).\left(x+2a\right)\right]+a^4\)
\(\Leftrightarrow\) \(\left(x^2+ax\right)\left(x^2+ax-2a^2\right)+a^4\)
Đặt b = \(\left(x^2+ax\right)\)
Khi đó đa thức đã cho có dạng:
\(b\left(b-2a^2+a^4\right)\)
\(\Leftrightarrow\) \(b^2-2a^2b+a^4\)
\(\Leftrightarrow\) \(\left(b-a^2\right)^2\)
\(\Leftrightarrow\) \(\left(x^2+ax-a^2\right)^2\)
hay \(x\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\) là bình phương của 1 đa thức
Từ x+y+z=1 => 1-x = y+z
Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\), ta có : \(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-z\right)\left(1-y\right)\le\left[\left(y+z\right)+\left(1-z\right)\right]^2.\left(1-y\right)\)
\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\le1+y\)
\(\Rightarrow1+y=x+2y+z\ge4\left(1-x\right)\left(1-y\right)\left(1-z\right)\)(ĐPCM)
Ta có:\(\frac{x}{z}=\frac{z}{y}\Rightarrow xy=z^2\)
Trong khi :\(\frac{x^2+y^2}{z^2+y^2}=\frac{x^2+xy}{xy+y^2}\)
\(=\frac{x\left(x+y\right)}{y\left(x+y\right)}=\frac{x}{y}\left(Đpcm\right)\)
\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\)
\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
Cộng vế với vế các BĐT trên:
\(3x^2+3y^2+3z^3+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{12-3}{3}=3\)
Dấu "=" xảy ra khi \(x=y=z=1\)