cho tam giác ABC cân tại A có góc BAC=120 độ. Lấy M, N thuộc BC sao cho BM=MN=NC. CMR góc MAN=60 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{B}=\widehat{C}=\dfrac{180^0-70^0}{2}=55^0\)
b: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
c: Xét ΔAMN có
AB/BM=AC/CN
nên MN//BC
d: Ta có: ΔAMN cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
=>AI⊥MN
mà MN//BC
nên AI⊥BC
mà AD⊥BC
và AD,AI có điểm chung là A
nên D,A,I thẳng hàng
e: Xét ΔBEC có
D là trung điểm của BC
DA//BE
Do đó: A là trung điểm của EC
Cách 3: (Lớp 8) Trên nửa mặt phẳng bờ AC không chứa B, dựng tam giác đều ACG.
Có ngay AB = AC = AG và ^BAG = ^BAC + ^CAG = 900 => \(\Delta\)BAG vuông cân tại A
Suy ra ^CBG = ^ABC - ^ABG = 300 = ^DAB (1)
Cũng dễ thấy ^ADB = 1350; ^BCG = ^ACB + ^ACG = 1350 => ^BCG = ^ADB (2)
Từ (1) và (2) suy ra \(\Delta\)CGB ~ \(\Delta\)DBA (g.g). Từ đây \(\frac{AD}{BC}=\frac{AB}{BG}=\frac{1}{\sqrt{2}}\)
Vậy \(AD=\frac{BC}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)(cm).
Trên nửa mặt phẳng bờ BC chứa A dựng \(\Delta\)BCE vuông cân tại E
Khi đó ^EBA = ^ABC - ^EBC = 300 = ^DAB
\(\Delta\)AEC = \(\Delta\)AEB (c.c.c) => ^EAB = ^BAC/2 = 150 = ^DBA
Xét \(\Delta\)BEA và \(\Delta\)ADB có: AB chung, ^EAB = ^DBA, ^EBA = ^DAB
=> \(\Delta\)BEA = \(\Delta\)ADB (g.c.g) => AD = BE = \(\frac{BC}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)(cm).
A, So sánh BK và BI
B, So sánh hai góc ABy và CBx
C, Chứng tỏ Bm la tia phân giác của góc ABC
Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath
xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)
suy ra tam giác ABM=tam giác ACN(c.g.c)
suy ra AM=AN
suy ra tam giác AMN cân tại A
b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)
suy ra tam giác AHB= tam giác AKC(ch-gn)
suy ra BH=CK
a) \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\) ; \(AB=AC\)
mà \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\) (kề bù)
\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)
Xét: \(\Delta ABM\)và \(\Delta ACN\)có:
\(AB=AC\)(cmt)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
\(BM=CN\)(gt)
suy ra: \(\Delta ABM=\Delta ACN\)(c.g.c)
\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)
\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)
giúp mình với