K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:

Áp dụng BĐT AM-GM:

$x^3+1=(x+1)(x^2-x+1)\leq \left(\frac{x+1+x^2-x+1}{2}\right)^2=\frac{(x^2+2)^2}{4}$

$\Rightarrow \sqrt{x^3+1}\leq \frac{x^2+2}{2}$

$\Rightarrow \frac{1}{\sqrt{x^3+1}}\geq \frac{2}{x^2+2}$. Tương tự với các phân thức khác và cộng theo vế:

$\sum \frac{1}{\sqrt{x^3+1}}\geq 2\sum \frac{1}{x^2+2}$

Áp dụng BĐT Cauchy-Schwarz:

$\sum \frac{1}{x^2+2}\geq \frac{9}{x^2+y^2+z^2+6}=\frac{9}{12+6}=\frac{1}{2}$

$\Rightarrow \sum \frac{1}{\sqrt{x^3+1}}\geq 2.\frac{1}{2}=1$
Ta có đpcm

Dấu "=" xảy ra khi $x=y=z=2$

NV
18 tháng 4 2021

Đề bài chắc chắn là có vấn đề

Thử với \(x=y=z=\dfrac{1}{3}\) thì \(VT=\dfrac{\sqrt{2}}{4}< 2\)

NV
18 tháng 4 2021

Như bạn sửa điều kiện thành \(x^3+y^3+z^3=1\) thì dấu "=" không xảy ra

Việc chứng minh vế trái lớn hơn 2 (một cách tuyệt đối) khá đơn giản:

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)

Làm tương tự với 2 số hạng còn lại, sau đó cộng vế

Nhưng đẳng thức không xảy ra.

13 tháng 7 2016

Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))

Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)

\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)

\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)

\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)

Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)

13 tháng 7 2016

Phần đặt ẩn a,b,c bạn bỏ đi nhé ^^

NV
9 tháng 4 2022

Ta có:

\(1.\sqrt{1+x^2}+1.\sqrt{2x}\le\sqrt{\left(1+1\right)\left(1+x^2+2x\right)}=\sqrt{2}\left(x+1\right)\)

Tương tự:

\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\) ; \(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)

Cộng vế:

\(P\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\left(x+y+z\right)\le\sqrt{2}\left(3+3\right)+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)

\(P_{max}=6+3\sqrt{2}\) khi \(x=y=z=1\)

1 tháng 4 2022

giải bằng Bunhiaskopki nha bạn, search gg

1 tháng 4 2022

Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)

\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm) 

NV
26 tháng 3 2022

Biểu thức này chỉ có GTLN, ko có GTNN

29 tháng 1 2020

Ta có: \(4^x.4^y.4^z=4^{x+y+z}=4^0=1\)

Áp dụng BĐT cô - si cho 4 số dương:

\(3+4^x=1+1+1+4^x\ge4\sqrt[4]{4^x}\)\(\Rightarrow\sqrt{3+4^x}\ge2\sqrt{\sqrt[4]{4^x}}=2\sqrt[8]{4^x}\)

Tương tự ta có: \(\sqrt{3+4^y}\ge2\sqrt[8]{4^y}\);\(\sqrt{3+4^z}\ge2\sqrt[8]{4^z}\)

\(VT=\text{Σ}_{cyc}\sqrt{3+4^x}=2\left[\sqrt[8]{4^x}+\sqrt[8]{4^y}+\sqrt[8]{4^z}\right]\)

\(\ge2.3\sqrt[3]{\sqrt[8]{4^x.4^y.4^z}}=6\)

(Dấu "="\(\Leftrightarrow x=y=z=0\))

29 tháng 1 2020

2k7 à ;giỏi wá