công trừ phân thức
\(\frac{1}{2x+2}-\frac{x-1}{3x^2+6x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ne1\)
\(\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{1-2x}{x^2+x+1}-\frac{6}{x-1}\)
\(=\frac{4x^2-3x+5-\left(1-2x\right)\left(x-1\right)-6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{4x^2-3x+5+2x^2-3x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-12x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x-6}{4-9x^2}\)
\(=\frac{3x+2}{9x^2-4}-\frac{3x-2}{9x^2-4}+\frac{3x-6}{9x^2-4}\)
\(=\frac{3x+2-3x+2+3x-6}{9x^2-4}\)
\(=\frac{3x-2}{9x^2-4}\)
\(=\frac{1}{3x+2}\)
\(\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x^2}{x^2-9}\)
\(=\frac{18}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\) \(-\frac{3\left(x+3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)\(-\frac{x^2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x-3\right)}\)
\(=\frac{18-3x-9-x^3+3x^2}{\left(x-3\right)^2\left(x+3\right)}\)
\(=\frac{-x^3+3x^2-3x+9}{\left(x-3^2\right)\left(x+3\right)}\)
\(=\frac{\left(-x^2-3\right)\left(x-3\right)}{\left(x-3^2\right)\left(x+3\right)}\)
\(=\frac{-x^2-3}{\left(x-3\right)\left(x+3\right)}\)
học tốt
\(\frac{1}{x-3}-\frac{3}{2x+6}-\frac{x}{2x^2-12x+18}\)
\(=\frac{1}{x-3}-\frac{3}{2\left(x+3\right)}-\frac{x}{2\left(x^2-6x+9\right)}\)
\(=\frac{1}{x-3}-\frac{3}{2\left(x+3\right)}-\frac{x}{2\left(x-3\right)^2}\)
\(=\frac{2\left(x-3\right)\left(x+3\right)-3\left(x-3\right)^2-x\left(x+3\right)}{2\left(x-3\right)^2\left(x+3\right)}\)
\(=\frac{2\left(x^2-9\right)-3\left(x^2-6x+9\right)-x\left(x+3\right)}{2\left(x-3\right)^2\left(x+3\right)}\)
\(=\frac{2x^2-18-3x^2+18x-27-x^2-3x}{2\left(x-3\right)^2\left(x+3\right)}\)
\(=\frac{-2x^2+15x-45}{2\left(x-3\right)^2\left(x+3\right)}\)
\(MTC:\left(x-3\right)^2\left(x^2+3x+9\right)\)
\(\frac{x}{x^3-27}=\frac{x}{\left(x-3\right)\left(x^2+3x+9\right)}=\frac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\frac{2x}{x^2-6x+9}=\frac{2x}{\left(x-3\right)^2}=\frac{2x\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\frac{1}{x^2+3x+9}=\frac{\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(MTC:2\left(x-1\right)\left(x+1\right)\)
\(\frac{x-1}{2x+2}=\frac{x-1}{2\left(x+1\right)}=\frac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)
\(\frac{x+1}{2x-2}=\frac{x+1}{2\left(x-1\right)}=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)
\(\frac{1}{1-x^2}=-\frac{1}{\left(x-1\right)\left(x+1\right)}=-\frac{2}{2\left(x-1\right)\left(x+1\right)}\)
\(MTC:2\left(x+1\right)\left(x^2-x+1\right)\)
\(\frac{1}{x^3+1}=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2}{2\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{3}{2x+2}=\frac{3}{2\left(x+1\right)}=\frac{3\left(x^2-x+1\right)}{2\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x^2-x+1}=\frac{4\left(x+1\right)}{2\left(x+1\right)\left(x^2-x+1\right)}\)
a)\(\frac{x^2+3x+2}{3x+6}=\frac{x^2+2x+x+2}{3\cdot\left(x+2\right)}=\frac{\left(x^2+2x\right)+\left(x+2\right)}{3\cdot\left(x+2\right)}=\frac{x\cdot\left(x+2\right)+\left(x+2\right)}{3\cdot\left(x+2\right)}\)
\(=\frac{\left(x+2\right)\cdot\left(x+1\right)}{3\cdot\left(x+2\right)}=\frac{x+1}{3}\)
b) \(\frac{2x^2+x-1}{6x-3}=\frac{2x^2+2x-x-1}{3\cdot\left(2x-1\right)}=\frac{\left(2x^2+2x\right)-\left(x+1\right)}{3\cdot\left(2x-1\right)}\)
\(=\frac{2x\cdot\left(x+1\right)-\left(x+1\right)}{3\cdot\left(2x-1\right)}=\frac{\left(2x-1\right)\cdot\left(x+1\right)}{3\cdot\left(2x-1\right)}=\frac{x+1}{3}\)
Ta có: MTC=36
Quy đồng
\(x=\frac{x.36}{36}\)
\(\frac{1-2x}{9}=\frac{\left(1-2x\right).4}{36}\)
\(\frac{3x-2}{12}=\frac{\left(3x-2\right).3}{36}\)
Ta có
:\(\frac{36x+4-8x+9x-6}{36}=\frac{37x-2}{36}\)
Toán lớp 8 hở mày ?
ĐKXĐ : \(x\ne-1\)
\(\frac{1}{2x+2}-\frac{x-1}{3x^2+6x+3}\)
\(=\frac{1}{2\left(x+1\right)}-\frac{x-1}{3\left(x^2+2x+1\right)}\)
\(=\frac{1}{2\left(x+1\right)}-\frac{x-1}{3\left(x+1\right)^2}\)
\(=\frac{3\left(x+1\right)}{2\left(x+1\right)\cdot3\left(x+1\right)}-\frac{2\left(x-1\right)}{3\left(x+1\right)^2\cdot2}\)
\(=\frac{3x+3}{6\left(x+1\right)^2}-\frac{2x-2}{6\left(x+1\right)^2}\)
\(=\frac{3x+3-2x+2}{6\left(x+1\right)^2}\)
\(=\frac{x+5}{6\left(x+1\right)^2}\)