Tìm giá trị nhỏ nhất của biểu thức: B=/2-4x/ - 2,5
/ / là dấu giá trị tuyệt đối nha mấy bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left|x-1,5\right|+\left|x-2,5\right|\)
Ta có : \(\left|x-1,5\right|\ge0.Với\forall x\in R\)
\(\left|x-2,5\right|\ge0.Với\forall x\in R\)
\(\Rightarrow A=\left|x-1,5\right|+\left|x-2,5\right|\ge0\)
Dấu " = " xảy ra khi \(\orbr{\begin{cases}\left|x-1,5\right|=0\\\left|x-2,5\right|=0\end{cases}\Rightarrow x=\orbr{\begin{cases}1,5\\2,5\end{cases}}}\). Vậy Min A = 0 khi và chỉ khi \(x=\orbr{\begin{cases}1,5\\2,5\end{cases}}\)
Ta có:P=(/x-3/+2)^2+(y+3)+2017
Ta thấy:/x-3/\(\ge\)0
\(\Rightarrow\)/x-3/+2\(\ge\)2
\(\Rightarrow\)(/x-3 +2)\(^2\)\(\ge\)4
y\(\ge\)0
\(\Rightarrow\)y+3\(\ge\)3
Do đó (/x-3/+2)\(^2\)\(\ge\)4+3+2017
=2024
Vậy giá trị nhỏ nhất của P là 2024\(\Leftrightarrow\)+, /x-3/=0
\(\Rightarrow\)x-3=0
x =0+3
x =3
+, y+3=0
y =0-3
y =-3
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
*\(x\ge\dfrac{1}{2}\Leftrightarrow\left|2x-1\right|=2x-1\)
\(D=\left(2x-1\right)^2-3\left(2x-1\right)+2=\left(2x-1\right)^2-2.\dfrac{3}{2}\left(2x-1\right)+\dfrac{9}{4}-\dfrac{1}{4}=\left(2x-1-\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(2x-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)\(D_{min}=-\dfrac{1}{4}\Leftrightarrow x=\dfrac{5}{4}\left(1\right)\)
*\(x< \dfrac{1}{2}\Leftrightarrow\left|2x-1\right|=-2x+1\)
\(D=\left(2x-1\right)^2+3\left(2x-1\right)+2=\left(2x-1\right)^2+2.\dfrac{3}{2}\left(2x-1\right)+\dfrac{9}{4}-\dfrac{1}{4}=\left(2x-1+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(2x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)\(D_{min}=-\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\left(2\right)\)
-Từ (1) và (2) suy ra \(D_{min}=-\dfrac{1}{4}\Leftrightarrow x\in\left\{\dfrac{5}{4};\dfrac{-1}{4}\right\}\)
Ta có: \(D=\left|x\right|+x\)
\(\Rightarrow\orbr{\begin{cases}D=-x+x=0\\D=x+x=2x\end{cases}}\)
Vậy Dmin= 0
Ta có : \(B=\left|2-4x\right|-2,5\)
\(\Rightarrow B\)nhỏ nhất \(\Leftrightarrow\left|2-4x\right|\)nhỏ nhất
\(\Leftrightarrow\left|2-4x\right|=0\) ( vì \(\left|2-4x\right|\ge0\)với mọi x)
\(\Leftrightarrow2-4x=0\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=0,5\)
Khi đó : \(B=\left|2-4.0,5\right|-2,5=-2,5\)
Vậy \(B_{min}=-2,5\) tại \(x=0,5\)