Cho:
A = 2^1 + 2^2 + 2^3 + .... + 2^2004
Chứng minh:A chia hết cho 3,cho 7,cho 15
Trả lời đi nha rồi mình tick cho!OK!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=(1+2)+(22+23)+.....+(26+27)
S= 3 +22(1+2)+....+26(1+2)
S= 3 +22.3+.....+26.3
S= 3(1+22+.....+26)chia hết cho 3
Tick mình đầu tiên nha
a)S=3^0+3^2+3^4+...+3^2000+3^2002
=>3^2S=3^2(3^0+3^2+3^4+...+3^2000+3^2002)
=>9S=3^2+3^4+3^6+...+3^2002+3^2004
=>9S-S=(3^2+3^4+3^6+...+3^2004)-(3^0+3^2+3^4+...+3^2000+3^2002)
=>8S=3^2004-3^0=3^2004-1
=>S=(3^2004-1)/8
b) S=3^0+3^2+3^4+...+3^2000+3^2004
=>S=(3^0+3^2+3^4)+(3^6+3^8+3^10)+...+(3^1998+3^2000+3^2002)
=>S=(1+3^2+3^4)+3^6(1+3^2+3^4)+...+3^1998(1+3^2+3^4)
=>S=91+3^6.91+...+3^1998.91
=>S=91(1+3^6+...+3^1998)
=>S=7.13.(1+3^6+...+3^1998
=>S chia hết cho 7
b)Ta có:S=(30+32+34)+...(31996+31998+32000+32002)
S=91+...+31996.(1+32+34)
S=91+...+31996.91
S=91.(1+...+31996)
Vì 91chia hết cho 7 nên S chia hết cho 7
a) ( 3n + 2 ) chia hết cho n - 1
Ta có : 3n + 2 = 3n - 1 + 3
Vì 3n - 1 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư( 3 )
Ư ( 3) = { 1 ; - 1 ; 3 ; -3 }
=> n - 1 thuộc {1 ; -1 ; 3 ; -3 }
Vậy n thuộc { 2 ; 0 ; 4 ; -2 }
b ) ( 3n + 24 ) chia hết cho n - 4
Ta có : 3n + 24 = 3n - 4 + 28
Vì 3n - 4 chia hết cho n - 4
=> 28 chia hết cho n - 4
Xong bạn làm tương tự như câu a nha
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
đây là bài làm của mình:
A=2^1+2^2+2^3+...+2^2004
A=(2^1+2^2)+(2^3)+...+(2^2003=2^2004)
A=2.(1+2)+2^3.(1+2)+...+2^2003.(1+2)
A=2.3+2^3.3+...+2^2003.3
A=3.(2+2^3+2^5+...+2^2003) chia hết cho 3
cho 7 nhóm 3 số hạng vào với nhau còn cho 15 thì nhóm 4 số hạng vào với nhau tương tự như chứng minh chia hêt cho 3 nha
hứa cho mik r đó (UwU)