Cho hai số x>0,y>0 và \(\sqrt{x}\) + \(\sqrt{y}\)= 1
Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức E= x\(\sqrt{x}\)+ y\(\sqrt{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
Sửa đề: \(x\geq 0; y\geq 0\)
Tìm min:
Áp dụng BĐT Bunhiacopxky:
\((x\sqrt{x}+y\sqrt{y})(\sqrt{x}+\sqrt{y})\geq (x+y)^2\)
\((x+y)(1+1)\geq (\sqrt{x}+\sqrt{y})^2\)
\(\Rightarrow (x\sqrt{x}+y\sqrt{y})(\sqrt{x}+\sqrt{y})\geq \left[\frac{(\sqrt{x}+\sqrt{y})^2}{2}\right]^2\)
\(\Leftrightarrow x\sqrt{x}+y\sqrt{y}\geq \frac{1}{4}\) (do \(\sqrt{x}+\sqrt{y}=1\) )
Vậy \(E_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)
----------------
Tìm max:
Vì \(\sqrt{x}+\sqrt{y}=1; \sqrt{x},\sqrt{y}\geq 0\) nên \(0\leq \sqrt{x}, \sqrt{y}\leq 1\)
\(\Rightarrow \left\{\begin{matrix} x\sqrt{x}\leq \sqrt{x}\\ y\sqrt{y}\leq \sqrt{y}\end{matrix}\right.\)
\(\Rightarrow E=x\sqrt{x}+y\sqrt{y}\leq \sqrt{x}+\sqrt{y}=1\)
Vậy \(E_{\max}=1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.
ta có
can x+1 >=0 voi moi x
can 6-x >=0 voi moi x
=> căn x+1 + căn 6-x >= 0
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\ge\)7 => Q\(\ge\)\(\sqrt{7}\)
dấu bằng khi x=-1 hoặc x=6
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\le\)7+x+1+6-x = 14 => Q\(\le\) \(\sqrt{14}\)
dấu bằng khi x+1 = 6-x <=> 2x =5 <=> x=2.5
Ta thấy: |x-10| >= 0 (1); |x-10| >= 0 (2)
Cộng 2 bđt cùng chiều (1) và (2) ta được: |x-10| + |x-10| >= 0 <=> A= |x-10| + |x-10| -2 >= -2
=> minA = -2
Dấu đẳng thức xảy ra khi và chỉ khi x=10 và y=-100
Chắc v!! =)))
Áp dụng bđt AM-GM ta có
\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)
\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)
Dấu "=" xảy ra khi x=y