K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

Khó nhỉ :))

1 tháng 12 2018

không thấy e nha bạn

NV
18 tháng 4 2021

Đặt \(A=a^5+b^5+c^5\)

\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)

Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5

Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5

Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)

Vậy \(B=a^5-a⋮5\) với mọi a nguyên

Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c

\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)

(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))

22 tháng 1 2020

Bài 1 :                                                         Bài giải

Ta có : 

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)

\(A=7\cdot400+7^4\cdot400\)

\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)

\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)

22 tháng 1 2020

Bài 1 :                                                         Bài giải

Ta có : 

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)

\(A=7\cdot400+7^4\cdot400\)

\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)

\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)

21 tháng 6 2015

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?

21 tháng 6 2015

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?