K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2021

\(\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{AC}{BC}:\dfrac{AB}{BC}=\dfrac{AC}{AB}=\tan\alpha\)

\(\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{AB}{BC}:\dfrac{AC}{BC}=\dfrac{AB}{AC}=\cot\alpha\)

\(\tan\alpha\cot\alpha=\dfrac{AC}{AB}\cdot\dfrac{AB}{AC}=1\)

\(\sin^2\alpha+\cos^2\alpha=\dfrac{AC^2}{BC^2}+\dfrac{AB^2}{BC^2}=\dfrac{AB^2+AC^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\left(pytago\right)\)

HN
Hương Nguyễn
Giáo viên
25 tháng 4 2021

1. Những cây sẵn trong tự nhiên, tự bản thân nó được dùng để trang trí: cây hoa (hoa hồng, hoa cẩm chướng..), cây tùng, cây sanh. 
2. Phương pháp sinh sản vô tính: giâm cành bằng cát, ghép, chiết cành, nuôi cấy mô tế bào. 
phương pháp sinh sản hữu tính: thụ phấn trong tự nhiên. 
3. chọn chậu cây cảnh dựa trên các yếu tố: chất liệu, kích thước, 

4. tránh hư hỏng do va đập cơ học

5. Sử dụng axit abxixic để ức chế sinh trưởng. 
6. kỹ thuật sản xuất, an toàn thực phẩm, môi trường làm việc đảm bảo, nguồn gốc sản phẩm rõ ràng. 

25 tháng 4 2021

E cảm ơn cô nhiều ạ!!

31 tháng 8 2021

cos2x - (2m + 1)cosx + m + 1 = 0

⇔ 2cos2x - (2m + 1).cosx = 0

⇔ \(\left[{}\begin{matrix}cosx=0\left(1\right)\\2cosx=2m+1\left(2\right)\end{matrix}\right.\)

(1) ⇔ \(x=\dfrac{\pi}{2}+k\pi\) với k thuộc Z. Mà \(x\in\left(\dfrac{\pi}{2};2\pi\right)\)

⇒ x = \(\dfrac{3\pi}{2}\)

Như vậy đã có 1 nghiệm trên \(\left(\dfrac{\pi}{2};2\pi\right)\) đó là x = \(\dfrac{3\pi}{2}\). Bây giờ cần tìm m để (2) có 2 nghiệm phân biệt trên \(\left(\dfrac{\pi}{2};2\pi\right)\) và trong 2 nghiệm đó không có nghiệm x = \(\dfrac{3\pi}{2}\). Tức là x = \(\dfrac{3\pi}{2}\) không thỏa mãn (2), tức là

2m + 1 ≠ 0 ⇔ \(m\ne-\dfrac{1}{2}\)

(2) ⇔ \(2.\left(2cos^2\dfrac{x}{2}-1\right)=2m+1\)

⇔ \(4cos^2\dfrac{x}{2}=2m+3\)

Do x \(\in\left(\dfrac{\pi}{2};2\pi\right)\) nên \(\dfrac{x}{2}\in\left(\dfrac{\pi}{4};\pi\right)\) nên cos\(\dfrac{x}{2}\) ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)

Đặt cos\(\dfrac{x}{2}\) = t ⇒ t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\). Ta được phương trình : 4t2 = 2m + 3

Cần tìm m để [phương trình được bôi đen] có 2 nghiệm t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)

Dùng hàm số bậc 2 là ra. Nhớ kết hợp điều kiện \(m\ne-\dfrac{1}{2}\)

 

30 tháng 12 2020

556667576

Câu 4:

a) nC2H6O=0,3(mol)

PTHH: C2H6O + 3 O2 -to-> 2 CO2 + 3 H2O

0,3___________0,9_____0,6(mol)

=>V(CO2,đktc)=0,6 x 22,4= 13,44(l)

b) V(kk,dktc)=V(O2,dktc) . 100/20 = (0,9.22,4).5=100,8(l)

Câu 5:

C2H6O + 3 O2 -to-> 2 CO2 + 3 H2O

nH2O=0,9(mol)

=> nCO2= 2/3. 0,9=0,6(mol)

a) V(CO2,đktc)=0,6.22,4=13,44(l)

b) Vkk=5.V(O2,dktc)= 5.(0,9.22,4)= 100,8(l)

25 tháng 9 2021

cái thứ 2 em tải hình xuống đề phòng hình 1 mất ạ

 

Bài 1: 

1: \(\sqrt{3+2\sqrt{2}}=\sqrt{2}+1\)

2: \(\sqrt{5-2\sqrt{6}}=\sqrt{3}-\sqrt{2}\)

3: \(\sqrt{11-2\sqrt{30}}=\sqrt{6}-\sqrt{5}\)

4: \(\sqrt{7-2\sqrt{10}}=\sqrt{5}-\sqrt{2}\)

23 tháng 12 2021

g: \(=\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)

h: \(=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)

23 tháng 12 2021

\(e,=\dfrac{1}{x-1}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x^2-2x+1}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x-1}{x^2+1}\\ f,=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\\ =\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)

\(g,=\dfrac{x}{x\left(x-2\right)}-\dfrac{x^2+4x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x\left(x+2\right)}\\ =\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\\ h,=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)

25 tháng 9 2021

1) \(\sqrt{2x-5}=7\)

\(\left(\sqrt{2x-5}\right)^2=7^2\)

\(2x-5=49\)

\(2x=54\)

\(x=27\)

2) \(3+\sqrt{x-2}=4\)

\(\sqrt{x-2}=1\)

\(\left(\sqrt{x-2}\right)^2=1^2\)

\(x-2=1\)

\(x=3\)

25 tháng 9 2021

1) \(\sqrt{2x-5}=7\left(đk:x\ge\dfrac{5}{2}\right)\)

\(\Leftrightarrow2x-5=49\Leftrightarrow2x=54\Leftrightarrow x=27\left(tm\right)\)

2) \(3+\sqrt{x-2}=4\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)

3) \(\Leftrightarrow\sqrt{\left(x-1\right)^2}=1\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

4) \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

5) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+4\right)^2}\)

\(\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

6) \(ĐK:x\ge-2\)

 \(\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\)

\(\Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\)

\(\Leftrightarrow x+2=x+7\Leftrightarrow2=7\left(VLý\right)\)

Vậy \(S=\varnothing\)

7) \(ĐK:x\ge-1\)

\(\Leftrightarrow5\sqrt{2x+1}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{2x+1}\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow2x+1=x+1\Leftrightarrow x=0\left(tm\right)\)

10 tháng 2 2022

Xet tam giac BDC va tam giac CEB ta co 

^BDC = ^CEB = 900

BC _ chung 

^BCD = ^CBE ( gt ) 

=> tam giac BDC = tam giac CEB ( ch - gn ) 

=> ^DBC = ^ECB ( 2 goc tuong ung ) 

Ta co ^B - ^DBC = ^ABD 

^C - ^ECB = ^ACE 

=> ^ABD = ^ACE 

Xet tam giac IBE va tam giac ICD 

^ABD = ^ACE ( cmt )

^BIE = ^CID ( doi dinh ) 

^BEI = ^IDC = 900

Vay tam giac IBE = tam giac ICD (g.g.g) 

c, Do BD vuong AC => BD la duong cao 

CE vuong BA => CE la duong cao 

ma BD giao CE = I => I la truc tam 

=> AI la duong cao thu 3 

=> AI vuong BC