K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

help me, hic

4 tháng 12 2018

a, ĐK: \(a\ne0,b\ne0,a+b\ne0\)

\(A=\left[\frac{1}{a^2}+\left(\frac{1}{a}+\frac{1}{b}\right):\frac{a+b}{2}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)

\(=\left[\frac{1}{a^2}+\frac{a+b}{ab}:\frac{a+b}{2}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)

\(=\left[\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)

\(=\frac{\left(a+b\right)^2}{a^2b^2}.\frac{a^2b^2}{\left(a+b\right)\left(a^2-ab+b^2\right)}.\frac{1}{a+b}\)

\(=\frac{1}{a^2-ab+b^2}\)

b, \(a^2-ab+b^2=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2>0\left(a,b\ne0\right)\)

\(\Rightarrow A=\frac{1}{a^2-ab+b^2}>0\forall a;b\)

3 tháng 11 2017

Áp dụng hằng đẳng thức mà làm 

3 tháng 11 2017

Hàng đẳng thức nào

18 tháng 8 2023

a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)

b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)

c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)

\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

26 tháng 5 2018

B ơi b lấy đề này ở đâu v ạ

6 tháng 5 2019

B= \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\)\(\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)

B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)\(\frac{1}{20}\)

vậy B= \(\frac{1}{20}\)

6 tháng 5 2019

b,A=(1/101+1/102+...+1/150)+(1/151+1/152+...1/200)>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8=107/201+1/8>1/2+2/8=5/8

Vậy A>5/8

Nhớ k mik nha!!!!!!!!!!!!!

11 tháng 6 2017

a)  Điều kiện :  \(a\ne-b;b\ne1;a\ne-1\)

\(P=\frac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+b^2-a^2b^2+a-b-ab}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2\left(1-b^2\right)-\left(1-b^2\right)+a\left(1-b\right)+\left(1-b\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(1-b\right)\left(a^2+a^2b-1-b+a+1\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+a^2b+a-b}{1+a}\)

\(P=\frac{a\left(a+1\right)+b\left(a-1\right)\left(a+1\right)}{1+a}\)

\(P=\frac{\left(a+1\right)\left(a+ab-b\right)}{1+a}\)

P = a + ab - b

b)

P = 3

<=>  a + ab - b = 3

<=>  a(b+1) - (b+1) +1 - 3 = 0

<=>   (b+1)(a-1)  = 2

Ta có bảng sau với a, b nguyên

b+112-1-2
a-121-2-1
b01-2-3
a32-10
so với đk loạiloại 


Vậy (a;b) \(\in\){ (3; 0) ; (0; -3)}