cho \(P=\frac{x+2y-3z}{x-2x+3z}\)
tính P, biết x,y,z tỉ lệ vs các số 5,4,3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: x,y,z tỉ lệ với 5;4;3
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
\(\Rightarrow x=5k;y=4k;z=3k\)
\(P=\frac{x+2y-3z}{x-2y+3z}\)
\(\Rightarrow P=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}\)
\(\Leftrightarrow P=\frac{4k}{6k}\)
\(\Leftrightarrow P=\frac{2}{3}\)
Vậy \(P=\frac{2}{3}\)
Lời giải:
Vì $x,y,z$ tỉ lệ với $5,4,3$ nên:
$\frac{x}{5}=\frac{y}{4}=\frac{z}{3}$
Đặt $\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k; y=4k; z=3k$.
Khi đó:
$P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}$
$=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}$
x,y,z tỉ lệ với 5,4,3 => \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
=> x = 5k ; y = 4k ; z = 3k
=> \(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4}{6}=\frac{2}{3}\)
Vậy P = 2/3
Vì x, y, z tỉ lệ với 5, 4, 3 nên ta có: \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{2y}{8}=\frac{3z}{9}=\frac{x+2y-3z}{5+8-9}=\frac{x+2y-3z}{4}\)
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{2y}{8}=\frac{3z}{9}=\frac{x-2y+3z}{5-8+9}=\frac{x-2y+3z}{6}\)
Do đó:\(\frac{x+2y-3x}{4}=\frac{x-2y+3x}{6}\)
\(\Rightarrow\)\(\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)
Vậy \(P=\frac{2}{3}\)
d3wercfv