K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

Vì  \(\left(9x^2-1\right)^2\ge0;\left|x-\frac{1}{3}\right|\ge0\Rightarrow\left(9x^2-1\right)^2+\left|x-\frac{1}{3}\right|\ge0\)

Để \(\left(9x^2-1\right)^2+\left|x-\frac{1}{3}\right|=0\Leftrightarrow\hept{\begin{cases}9x^2-1=0\\x-\frac{1}{3}=0\end{cases}\Leftrightarrow x=\frac{1}{3}}\)

a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x+25=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

b) Ta có: \(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)

d) Ta có: \(x^3-x=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

e) Ta có: \(27x^3-27x^2+9x-1=1\)

\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)

\(\Leftrightarrow\left(3x-1\right)^3=1\)

\(\Leftrightarrow3x-1=1\)

\(\Leftrightarrow3x=2\)

hay \(x=\dfrac{2}{3}\)

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

15 tháng 9 2021

a)\(3x^2-4x=0<=>x(3x-4)=0\)
TH1: x=0

TH2 3x-4=0 <=>x=4/3

KL:.....

b) (x+3)(x−1)+2x(x+3)=0.

<=> (x+3)(x-1+2x)=0

TH1: x+3=0 <=> x=-3

TH2  x-1=0  <=> x=1

KL:.....

c) \(9x^2+6x+1=0. <=>(3x+1)^2=0<=>3x+1=0<=>x=-1/3 ​\)

KL:......
d) \(x^2−4x=4.<=>(x-2)^2=0<=>x-2=0<=>x=2\)

KL:....

15 tháng 9 2021

a) \(3x^2-4x=0\)

\(\Leftrightarrow x\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

b) \(\left(x+3\right)\left(x-1\right)+2x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(9x^2+6x+1=0\)

\(\Leftrightarrow\left(3x+1\right)^2=0\)

\(\Leftrightarrow3x+1=0\Leftrightarrow x=-\dfrac{1}{3}\)

d) \(x^2-4x=4\)

\(\Leftrightarrow\left(x-2\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\sqrt{2}\\x-2=-2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}+2\\x=-2\sqrt{2}+2\end{matrix}\right.\)

6 tháng 8 2017

\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{6\sqrt{x}}{3\sqrt{x}+1}\)

\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right].\frac{3\sqrt{x}+1}{6\sqrt{x}}\)

\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)

\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)

\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)

\(A=\frac{5}{6}\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)

\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)

\(\Leftrightarrow24\sqrt{x}=16\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)

20 tháng 8 2018

\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\div\frac{6\sqrt{x}}{3\sqrt{x}+1}\)

\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\times\frac{3\sqrt{x}+1}{6\sqrt{x}}\)

\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)

\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)

\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)

\(A=\frac{5}{6}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)

\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)

\(\Leftrightarrow24\sqrt{x}=16\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)

\(\Leftrightarrow x=\frac{4}{9}\)

20 tháng 12 2018

\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)

b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)

c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\) 

sau do tinh

cau nay la toan lp 8 nha

20 tháng 12 2018

P= O/ nha