K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

\(1,A=5^{n+2}+26\cdot5^n+8^{2n+1}\\ A=5^n\cdot25+26\cdot5^n+8\cdot8^{2n+1}\\ A=51\cdot5^n+8\cdot64^n\)

Ta có \(64:59R5\Rightarrow64^n:59R5\)

Vì vậy \(51\cdot5^n+8\cdot64^n:59R=5^n\cdot51+8\cdot5^n=5^n\left(51+8\right)=5^n\cdot59⋮59\)

Vậy \(A⋮59\)

(\(R\) là dư)

\(2,\\ a,2x\ge0;\left(x+2\right)^2\ge0,\forall x\\ \Leftrightarrow P=\dfrac{\left(x+2\right)^2}{2x}\ge0\\ P_{min}=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

 

cho hỏi là x=-2 thì x đâu còn \(\ge\) 0 nữa

1 tháng 4 2018

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)

\(\Leftrightarrow a^2y.\left(x+y\right)+b^2x.\left(x+y\right)\ge xy\left(a+b\right)^2\)

\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge a^2xy+2abxy+b^2xy\)

\(\Leftrightarrow a^2y^2-2abxy+b^2x^2+a^2xy-a^2xy+b^2xy-b^2xy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)

Dấu bằng xảy ra khi\(\dfrac{a}{x}=\dfrac{b}{y}\)

1 tháng 4 2018

Xét hiệu:

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}-\dfrac{\left(a+b\right)^2}{x+y}\)

\(=\dfrac{a^2.y\left(x+y\right)}{xy\left(x+y\right)}+\dfrac{b^2x\left(x+y\right)}{xy\left(x+y\right)}-\dfrac{xy\left(a+b\right)^2}{xy\left(x+y\right)}\)

\(=\dfrac{a^2xy+a^2y^2+b^2x^2+b^2xy-a^2xy-2abxy-b^2xy}{xy\left(x+y\right)}\)

\(=\dfrac{a^2y^2-2abxy+b^2x^2}{xy\left(x+y\right)}\)

\(=\dfrac{\left(ay-bx\right)^2}{x^2y+xy^2}\ge0\)

=> BĐT luôn đúng

Bài 1: 

a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)

Do đó: A>=0

19 tháng 8 2017

ý sai đề rồi =))

x,y,z > 0. Tìm GTNN của

\(P=\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2+\dfrac{12}{\left(x+y\right)\sqrt{x+y}+1}+\dfrac{12}{\left(y+z\right)\sqrt{y+z}+1}\)

Các bạn giúp mk với ^^^^^^

5 tháng 4 2017

Ta có : \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x+1\right)^2\ge4x\)

\(\left(y+1\right)^2\ge4y\)

Do đó : A \(\ge\dfrac{4x}{x}+\dfrac{4y}{y}=8\)

Dấu '' = '' xảy ra khi x = y = 1

Vậy min A là 8 khi x = y = 1

a) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì 

\(\sqrt{2n+5}-2>0\)

\(\Leftrightarrow\sqrt{2n+5}>2\)

\(\Leftrightarrow2n+5>4\)

\(\Leftrightarrow2n>-1\)

\(\Leftrightarrow n>-\dfrac{1}{2}\)

Kết hợp ĐKXĐ, ta được: \(n>-\dfrac{1}{2}\)

Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì \(n>-\dfrac{1}{2}\)

b) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(\sqrt{2n+5}-2< 0\)

\(\Leftrightarrow\sqrt{2n+5}< 2\)

\(\Leftrightarrow2n+5< 4\)

\(\Leftrightarrow2n< -1\)

\(\Leftrightarrow n< -\dfrac{1}{2}\)

Kết hợp ĐKXĐ, ta được: \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)

Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)

24 tháng 2 2021

a,Nghịch biến khi `x<0`

`<=>\sqrt{2n+5}-2>0(x>=-5/2)`

`<=>\sqrt{2n+5}>2`

`<=>2n+5>4`

`<=>2n> -1`

`<=>n> -1/2`

Kết hợp ĐKXĐ:

`=>n>1/2`

b,Đồng biến với mọi `x<0`

`<=>\sqrt{2n+5}-2<0`

`<=>\sqrt{2n+5}<2`

`<=>2n+5<4`

`<=>2n< -1`

`<=>n< -1/2`

Kết hợp ĐKXĐ:

`=>-5/2<x< -1/2`

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)