Cho hình chữ nhật ABCD. Kẻ BH vuông góc với AC. Gọi K,M lần lượt là trung điểm AH và CD. Chứng minh tứ giác BKMC nội tiếp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//PC và MN=PC
=>NCPM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MP
hay góc BMP=90 độ
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
a: Xét ΔHAB có
M là trung điểm của HB
I là trung điểm của HA
Do đó: MI là đường trung bình của ΔAHB
Suy ra: MI//AB
hay AIMB là hình thang
a.
Do M là trung điểm BH, I là trung điểm AH
\(\Rightarrow IM\) là đường trung bình tam giác ABH
\(\Rightarrow IM||AB\Rightarrow ABMI\) là hình thang
b.
Cũng do IM là đường trung bình tam giác ABH \(\Rightarrow IM=\dfrac{1}{2}AB\)
Mà E là trung điểm CD \(\Rightarrow CE=\dfrac{1}{2}CD\)
Do ABCD là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AB=CD\\AB||CD\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}IM=CE\\IM||CD\end{matrix}\right.\) \(\Rightarrow IMCE\) là hình bình hành
c.
Do \(\left\{{}\begin{matrix}IM||AB\left(cmt\right)\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow IM\perp BC\)
Lại có \(BH\perp AC\Rightarrow BH\perp IC\)
\(\Rightarrow M\) là giao điểm 2 đường cao của tam giác IBC
\(\Rightarrow M\) là trực tâm tam giác ABC
\(\Rightarrow CM\) là đường cao thứ 3 hay \(CM\perp IB\)
Lại có \(CM||IE\) (do IMCE là hbh)
\(\Rightarrow IE\perp IB\Rightarrow\Delta IBE\) vuông tại I
\(\Rightarrow IG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow IG=\dfrac{1}{2}BE\)
\(\Delta BCE\) vuông tại C có \(CG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow CG=\dfrac{1}{2}BE\)
\(\Rightarrow CG=IG\) hay tam giác ICG cân tại G
d.
Từ K hạ \(KF\) vuông góc đường thẳng CD (F thuộc đường thẳng CD)
\(\Rightarrow KF||BC\) (cùng vuông góc CD)
\(\Rightarrow\widehat{BKF}=\widehat{HBC}\) (đồng vị) (1)
Lại có \(\widehat{HBC}=\widehat{BAC}\) (cùng phụ \(\widehat{ACB}\)) (2)
\(\widehat{BAC}=\widehat{CDB}\) (tính chất hình chữ nhật) (3)
Từ (1);(2);(3) \(\Rightarrow\widehat{BKF}=\widehat{CDB}\) (4)
Mà \(\left\{{}\begin{matrix}BK=AC\left(gt\right)\\AC=BD\left(\text{hai đường chéo hcn}\right)\end{matrix}\right.\)
\(\Rightarrow BK=BD\Rightarrow\Delta BDK\) cân tại B
\(\Rightarrow\widehat{BKD}=\widehat{BDK}\) (5)
(4);(5) \(\Rightarrow\widehat{BKF}+\widehat{BKD}=\widehat{CDB}+\widehat{BDK}\)
\(\Rightarrow\widehat{FKD}=\widehat{FDK}\)
\(\Rightarrow\Delta DKF\) vuông cân tại F
\(\Rightarrow\widehat{FDK}=45^0\) hay \(\widehat{KDC}=45^0\)
a: Xét ΔHAB có
N là trung điểm của HB
M là trung điểm của HA
Do đó: NM là đường trung bình của ΔAHB
Suy ra: \(NM=\dfrac{AB}{2}=2\left(cm\right)\)
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét tứ giác ADHB có
\(\widehat{DAB}=\widehat{ADH}=\widehat{BHD}=90^0\)
Do đó: ADHB là hình chữ nhật
mà AB=AD
nên ADHB là hình vuông
Gọi N là trung điểm của BH
=> MN là đường trung ình của tam giác ABH
=>MN//AB, MN=1/2 AB
Mà AB=CD và AB//CD
=>MN//CD, MN = 1/2 CD
=> MNCK là hình bình hành
=> NC//MK (1)
Ta có: MN //AB
AB vuông góc với BC
=> MN vuông góc với BC tại E (E thuộc BC)
Tam giác BCM có BH và ME là đường cao và chúng cắt nhau tại N
=> CN vuông góc với BM (2)
Từ (1) và (2) suy ra:
BM vuông góc với MK (đpcm)