Cho tam giác ABC vuông ở A. Kẻ AH vuông góc BC. Kẻ HP vuông góc với AB và kéo dài để PE = PH. Kẻ HQ vuông góc với AC và kéo dài để có QF = QH a) cm tam giac (TG)ape=TG aph va tam giac aqh= tam giac aqf
b) cm a,e,f thang hang
c) cm be//cf
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAPE vuông tại p và ΔAPh vuông tại P có
AP chung
PE=PH
DO đó: ΔAPE=ΔAPH
Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có
AQ chung
QH=QF
Do đó: ΔAQH=ΔAQF
b: Ta có: ΔAHP=ΔAEP
nen góc HAP=góc EAP
=>AB là phân giác của góc HAE(1)
Ta có: ΔAHQ=ΔAFQ
nen góc FAC=góc HAC
=>AC là phân giác của góc HAF(2)
Từ (1) và (2) suy ra góc FAE=2x90=180 độ
=>F,A,E thẳng hàng
mà AE=AF
nên A là trung điểm của FE
a: Xét ΔAPE vuông tại p và ΔAPh vuông tại P có
AP chung
PE=PH
DO đó: ΔAPE=ΔAPH
Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có
AQ chung
QH=QF
Do đó: ΔAQH=ΔAQF
b: Ta có: ΔAHP=ΔAEP
nen góc HAP=góc EAP
=>AB là phân giác của góc HAE(1)
Ta có: ΔAHQ=ΔAFQ
nen góc FAC=góc HAC
=>AC là phân giác của góc HAF(2)
Từ (1) và (2) suy ra góc FAE=2x90=180 độ
=>F,A,E thẳng hàng
mà AE=AF
nên A là trung điểm của FE
c: Xét ΔAHB và ΔAEB có
AH=AE
góc HAB=góc EAB
AB chung
Do đo: ΔAHB=ΔAEB
Suy ra: góc AEB=90 độ
=>BE vuông góc với EF(3)
Xét ΔCHA và ΔCFA có
CH=CF
AH=AF
CA chung
Do đó: ΔCHA=ΔCFA
Suy ra góc CFA=90 độ
=>CF vuông góc với FE(4)
Từ (3) và (4) suy ra BE//CF
a) Xét ΔAHP vuông tại P và ΔAEP vuông tại P có
AP chung
HP=EP(gt)
Do đó: ΔAHP=ΔAEP(Hai cạnh góc vuông)
Suy ra: \(\widehat{HAP}=\widehat{EAP}\)(hai góc tương ứng)
Xét ΔFAQ vuông tại Q và ΔHAQ vuông tại Q có
AQ chung
QF=QH(gt)
Do đó: ΔFAQ=ΔHAQ(hai cạnh góc vuông)
Suy ra: \(\widehat{FAQ}=\widehat{HAQ}\)(hai góc tương ứng)
Ta có: \(\widehat{FAE}=\widehat{FAQ}+\widehat{HAQ}+\widehat{HAP}+\widehat{PAE}\)
\(=2\cdot\left(\widehat{HAQ}+\widehat{HAP}\right)\)
\(=2\cdot90^0=180^0\)
hay F,A,E thẳng hàng
Ta có: AH=AE(ΔAHP=ΔAEP)
mà AH=AF(ΔAQF=ΔAQH)
nên AE=AF
Ta có: F,A,E thẳng hàng(cmt)
mà AE=AF(cmt)
nên A là trung điểm của FE(đpcm)
Xét tam giác vuông FQA và tam giác vuông HQA:
QA chung
FQ = HQ
=> tam giác FQA = tam giác HQA (2 cạnh góc vuông) (1)
=> QAF = QAH (2 góc tương ứng)
Xét tam giác vuông HPA và tam giác vuông EPA:
AP chung
PH = PE
=> tam giác HPA = tam giác EPA (2 cạnh góc vuông) (2)
=> HAP = EAP (2 góc tương ứng)
Ta có: QAH + PAH =QAP =90o
và FAQ + QAH + HAP +PAE= 2 * QAH + 2* HAP = 2 (QAH + HAP) = 2* 90o = 180o
=> E, A, F thẳng hàng
Ta có:
HP _|_ AB; CA _|_ AB =>HP // AB
=> QAH = PHA (sole trong)
Xét tam giác vuông AQH và tam giác vuông HPA:
AH chung
QAH = PHA
=> tam giác AQH = tam giác HPA (cạnh huyền_ góc nhọn) (3)
Từ (1), (2), (3) => tam giác FQA = tam giác APE => AF= AE (2 cạnh tương ứng)
Mà E, A, F là 3 điểm thẳng hàng => A nằm giữa E và F.
Vậy E, A, F thẳng hàng và A là trung điểm của EF
1) Xét ΔAPE vuông tại P và ΔAPH vuông tại P có
AP chung
PE=PH
Do đó: ΔAPE=ΔAPH(hai cạnh góc vuông)
Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có
AQ chung
HQ=FQ
Do đó: ΔAQH=ΔAQF(hai cạnh góc vuông)
2) Ta có: \(\widehat{FAE}=\widehat{FAH}+\widehat{EAH}\)
\(=2\cdot\left(\widehat{QAH}+\widehat{PAH}\right)\)
\(=2\cdot90^0=180^0\)
Do đó: F,A,E thẳng hàng
mà AE=AF(=AH)
nên A là trung điểm của EF
=> Tam giác EAH cân tại A
Vì ΔAQH = ΔAQF ( cmt )
=> AH = AF ( hai cạnh t/ứng ) (2)
Từ (1) và (2) => EA = AF
=> A là trung điểm của EF
=> F,E,A thẳng hàng
Bài làm
a) Xét ΔAPE và ΔAPH có:
AP (chung)
/ EPA = / HPA = 90o
PE = PH (gt)
Do đó: ΔAPE = ΔAPH( c−g−c )
Xét ΔAQH và ΔAQF có:
AQ (chung)
/ AQH = / AQF = 90o
AH = AF (gt)
Do đó: ΔAQH=ΔAQF(c−g−c)
b) Vì ΔAPE = ΔAPH ( cmt )
=> EA = AH ( hai cạnh t/ứng ) (1)
=> Tam giác EAH cân tại A
Vì ΔAQH = ΔAQF ( cmt )
=> AH = AF ( hai cạnh t/ứng ) (2)
Từ (1) và (2) => EA = AF
=> A là trung điểm của EF
~ Mik quên cách chứng minh thẳng hàng rồi. ~
# Học tốt #
a: Xét ΔAPE vuông tại p và ΔAPh vuông tại P có
AP chung
PE=PH
DO đó: ΔAPE=ΔAPH
Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có
AQ chung
QH=QF
Do đó: ΔAQH=ΔAQF
b: Ta có: ΔAHP=ΔAEP
nen góc HAP=góc EAP
=>AB là phân giác của góc HAE(1)
Ta có: ΔAHQ=ΔAFQ
nen góc FAC=góc HAC
=>AC là phân giác của góc HAF(2)
Từ (1) và (2) suy ra góc FAE=2x90=180 độ
=>F,A,E thẳng hàng
mà AE=AF
nên A là trung điểm của FE
A. • Xét tam giác APE và APH có:
PE= PH ( gt)
PA chung
góc EPA = góc HPA ( = 90 độ)
→ tam giác APE = tam giác APH (c.g.c )
• CMTT : tam giác AQH = Tam giác AQF (c.g.c)
B. Do tg EPA = tg HPA → AH= EA
tg AQH = tg AQF → AH=AF
→ EA = AF
Mà điểm A nằm giữa E và F
→ ĐPCM
a: Xét ΔAPE vuông tại p và ΔAPh vuông tại P có
AP chung
PE=PH
DO đó: ΔAPE=ΔAPH
Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có
AQ chung
QH=QF
Do đó: ΔAQH=ΔAQF
b: Ta có: ΔAHP=ΔAEP
nen góc HAP=góc EAP
=>AB là phân giác của góc HAE(1)
Ta có: ΔAHQ=ΔAFQ
nen góc FAC=góc HAC
=>AC là phân giác của góc HAF(2)
Từ (1) và (2) suy ra góc FAE=2x90=180 độ
=>F,A,E thẳng hàng
mà AE=AF
nên A là trung điểm của FE
c: Xét ΔAHB và ΔAEB có
AH=AE
góc HAB=góc EAB
AB chung
Do đo: ΔAHB=ΔAEB
Suy ra: góc AEB=90 độ
=>BE vuông góc với EF(3)
Xét ΔCHA và ΔCFA có
CH=CF
AH=AF
CA chung
Do đó: ΔCHA=ΔCFA
Suy ra góc CFA=90 độ
=>CF vuông góc với FE(4)
Từ (3) và (4) suy ra BE//CF
=> Tam giác EAH cân tại A
Vì ΔAQH = ΔAQF ( cmt )
=> AH = AF ( hai cạnh t/ứng ) (2)
Từ (1) và (2) => EA = AF
=> A là trung điểm của EF
=> F,E,A thẳng hàng