K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2015

A B C F M E

a)ta có góc FAE=góc MEA=góc MFA=90o

=>AEMF là hình chữ nhật

b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F

MF chung

AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)

Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)

=>CF=AF (2 cạnh tương ứng)

=>F là trung điểm CA

mà F lại là trung điểm của MN 

=>MANC là hình bình hành

ta lại có CA vuông góc với MN

=>MANC là hình thoi

c)

ta có MC=MB ( AM là trung tuyến của BC)

ME song song AC (ME song song FA)

=> AE=EB

=>MF=AE(AEMF là hình vuông)

mà MF=NF(N là điểm đối xứng của M qua F)

      AE=EB(chưng minh trên)

=>MN=AB

Mà MN=AC( MANC là hình vuông)

nên : AB=AC

=> tam giác ABC vuông cân tại A

Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông

20 tháng 1 2019

hello how are you

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)

Do đó: ADME là hình chữ nhật

Xét ΔABC có 

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét tứ giác CMDE có 

DM//CE

DM=CE

Do đó: CMDE là hình bình hành

b: Xét tứ giác AMCF có 

E là trung điểm của AC

E là trung điểm của MF

Do đó: AMCF là hình bình hành

mà MA=MC

nên AMCF là hình thoi

13 tháng 5 2016

Ta có CE vuông góc AB (GT)

suy ra CE là đường cao (1)

Ta có BD vuông góc AC(GT)

suy ra BD là đường cao (2)

Mà BD giao CE tại H 

Từ (1) và (2) suy ra H là trực tâm (định nghĩa )

suy ra AM vuông góc BC (1)

Ta có tam giác ABC cân tại A (GT)

suy ra AB=AC (định nghĩa ) 

Ta có AM vuông góc BC (CMT)

suy ra góc AMB = góc AMC = 90

Xét tam giác AMB và tam giác AMC có 

AM chung 

góc AMB = góc AMC =90

AB= AC(CMT)

suy ra tam giác AMB = tam giác AMC (ch-cgv)

suy ra M là trung điểm BC (2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

OK rồi đó

BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc >90 . SO SÁNH AC VÀ BDb) TỨ GIÁC ABCD CÓ \hat{A} , \hat{B} ,\hat{C} TÙ. CHỨNG MINH AC<BDBÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE = AC. CHỨNG MINH RẰNG GÓC ADE = 45 ĐỘBÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG...
Đọc tiếp

BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc >90 . SO SÁNH AC VÀ BD

b) TỨ GIÁC ABCD CÓ \hat{A} , \hat{B} ,\hat{C} TÙ. CHỨNG MINH AC<BD



BÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE = AC. CHỨNG MINH RẰNG GÓC ADE = 45 ĐỘ


BÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG ĐIỂM CÁC CẠNH ĐỐI DIỆN THÌ TỨ GIÁC ĐÓ LÀ HÌNH BÌNH HÀNH



BÀI 4: CHO TAM GIÁC ABC VUÔNG TẠI A ( AC > AB), ĐƯỜNG CAO AH. TRÊN TIA HC LẤY HD = HA, ĐƯỜNG VUÔNG GÓC VỚI BC TẠI D CẮT AC TẠI E.

a) CHỨNG MINH AE = AB

b) GỌI M LÀ TRUNG ĐIỂM BE . TÍNH GÓC AHM


BÀI 5: TỨ GIÁC ABCD CÓ CÓ GÓC A = GÓC B =90 ĐỘ VÀ AC = BD.

a) ABCD CÓ PHẢI LÀ HÌNH CHỮ NHẬT KHÔNG? C/M

b) LẤY ĐIỂM M NẰM GIỮA A,C. VẼ MK VUÔNG GÓC AB TẠI K , MH VUÔNG GÓC AD TẠI H. CHỨNG MINH HK // BD

C) TIA MH CẮT BC Ở E, TIA KM CẮT CD TẠI F. MD CẮT HF Ở I, MB CẮT KE TẠI J/ CHỨNG MINH HK + EF = 2IJ

2
12 tháng 10 2016

ai lam thi lam di 

22 tháng 12 2021

em thi

28 tháng 1 2022

cop mạng thì viết tham khảo vào bạn ạ

28 tháng 1 2022

ghi tham khảo ở trên đầu pạn êy

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)

Do đó: ADME là hình chữ nhật

Xét ΔABC có 

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét tứ giác CMDE có 

DM//CE

DM=CE

Do đó: CMDE là hình bình hành

b: Xét tứ giác AMCF có 

E là trung điểm của AC

E là trung điểm của MF

Do đó: AMCF là hình bình hành

mà MA=MC

nên AMCF là hình thoi